Synlett 2011(14): 2039-2042  
DOI: 10.1055/s-0030-1261173
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Me3Ga-Mediated Addition of Acetylenes to α-Keto Esters: A New Method for the Synthesis of α-Hydroxy Esters

Honglai Jianga, Aijun Lina, Hao Penga, Yuhua Zhua, Yi Pana, Chengjian Zhu*a,b, Yixiang Cheng*a
a School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. of China
Fax: +86(25)83594886; e-Mail: cjzhu@nju.edu.cn;
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
Weitere Informationen

Publikationsverlauf

Received 24 April 2011
Publikationsdatum:
10. August 2011 (online)

Abstract

Trimethylgallium reagent was found to promote the addition of acetylenes to various α-keto esters. This reaction was efficiently carried out in anhydrous hexane at room temperature under mild conditions, and the corresponding α-hydroxy esters were obtained in good to excellent yields.

    References and Notes

  • 1a Comins DL. Hong H. Saha JK. Jianhua G. J. Org. Chem.  1994,  59:  5120 
  • 1b Senanayake CH. Fang QK. Grover P. Bakale RB. Vandenbossche CP. Wald SA. Tetrahedron Lett.  1999,  40:  819 
  • 1c Shilova EV. Pharm. Chem. J.  2000,  34:  419 
  • 1d Skaddan MB. Kilbourn MR. Snyder SE. Sherman PS. Desmond TJ. Frey KA. J. Med. Chem.  2000,  43:  4552 
  • 1e Okumura Y. Ando A. William Stevens R. Shimizu M. Tetrahedron  2002,  58:  8729 
  • 1f Sergeeva NN. Golubev AS. Henning L. Burger K. Synthesis  2003,  915 
  • 1g Zha C. Brown GB. Brouillette WJ. J. Med. Chem.  2004,  47:  6519 
  • 1h Tchilibon S. Zhang J. Yang Q.-F. Eidelman O. Kim H. Caohuy H. Jacobson KA. Pollard BS. Pollard HB. Biochem. Pharmacol.  2005,  70:  381 
  • 1i Tokuda O. Kano T. Gao W.-G. Ikemoto T. Org. Lett.  2005,  7:  5103 
  • 1j Tangirala RS. Antony S. Agama K. Pommier Y. Anderson BD. Bevins R. Curran DP. Bioorg. Med. Chem.  2006,  14:  6202 
  • 1k Xu Y. Etgen GJ. Broderick CL. Canada E. Gonzalez I. Lamar J. Montrose-Rafizadeh C. Oldham BA. Osborne JJ. Xie C. Shi Q. Winneroski LL. York J. Yumibe N. Zink R. Mantlo N. J. Med. Chem.  2006,  49:  5649 
  • 1l Jiménez-Teja D. Daoubi M. Collado IG. Hernández-Galán R. Tetrahedron  2009,  65:  3392 
  • 1m Nicolaou KC. Kang Q. Wu TR. Lim CS. Chen David K. J. Am. Chem. Soc.  2010,  132:  7540 
  • 2a DiMauro EF. Kozlowski MC. Org. Lett.  2002,  4:  3781 
  • 2b DiMauro EF. Kozlowski MC. J. Am. Chem. Soc.  2002,  124:  12668 
  • 2c Funabashi K. Jachmann M. Kanai M. Shibasaki M. Angew. Chem. Int. Ed.  2003,  42:  5489 
  • 2d Wieland LC. Deng H. Snapper ML. Hoveyda H. J. Am. Chem. Soc.  2005,  127:  15453 
  • 2e Fennie MW. DiMauro EF. O’Brien EM. Annamalai V. Kozlowski MC. Tetrahedron  2005,  61:  6249 
  • 2f Blay G. Fernández I. Marco-Aleixandre A. Pedro JR. Org. Lett.  2006,  8:  1287 
  • 2g Blay G. Fernández I. Marco-Aleixandre A. Pedro JR. Synthesis  2007,  3754 
  • 2h Wu HL. Wu PY. Shen YY. Uang BJ. J. Org. Chem.  2008,  73:  6445 
  • 2i Zheng B. Hou SC. Li ZY. Guo HC. Zhong JC. Wang M. Tetrahedron: Asymmetry  2009,  20:  2125 
  • 3 Hatano M. Ito O. Suzuki S. Ishihara K. Chem. Commun.  2010,  46:  2674 
  • 4a Jiang B. Chen ZL. Tang XX. Org. Lett.  2002,  4:  3451 
  • 4b Cozzi PG. Rudolph J. Bolm C. Norrby P.-O. Tomasini C. J. Org. Chem.  2005,  70:  5733 
  • 5a Ooi T. Morikawa J. Ichikawa H. Maruoka K. Tetrahedron Lett.  1999,  40:  5881 
  • 5b Utimoto K. Lambert C. Fukuda Y. Shiragami H. Nozaki H. Tetrahedron Lett.  1984,  25:  5423 
  • 6a Zhu CJ. Yuan F. Gu WJ. Pan Y. Chem. Commun.  2003,  692 
  • 6b Yuan F. Zhu CJ. Sun JT. Liu YJ. Pan Y. J. Organomet. Chem.  2003,  682:  102 
  • 7a Nishimura Y. Miyake Y. Amemiya R. Yamaguchi M. Org. Lett.  2006,  8:  5077 
  • 7b Nishimura Y. Amemiya R. Yamaguchi M. Tetrahedron Lett.  2006,  47:  1839 
  • 8 Han Y. Fang L. Tao WT. Huang YZ. Tetrahedron Lett.  1995,  36:  1287 
  • 9a Dai ZY. Zhu CJ. Yang MH. Zheng YF. Pan Y. Tetrahedron: Asymmetry  2005,  16:  605 
  • 9b Jia XF. Yang HW. Fang L. Zhu CJ. Tetrahedron Lett.  2008,  49:  1370 
  • 9c Jia XF. Fang L. Lin AJ. Pan Y. Zhu CJ. Synlett  2009,  495 
  • 11 Dahmen S. Org. Lett.  2004,  6:  2113 
  • 12a Uhl W. Breher F. Haddadpour S. Koch R. Matar M. Z. Anorg. Allg. Chem.  2004,  630:  1839 
  • 12b Chmiel J. Neumann B. Stammler H.-G. Mitzel NW. Chem. Eur. J.  2010,  16:  1 
10

General Experimental Procedure
In a 20 mL Schlenk reaction tube, 1 M solution of Me3Ga (0.15 mL, 0.15 mmol, 1 M in toluene) and 4-methoxy-phenylacetylene (20 mg, 0.15 mmol) were dissolved in anhyd hexane (1 mL) and stirred for 1 h at r.t. under an nitrogen atmosphere. Then the mixture was cooled to 0 ˚C and methyl benzoylformate (0.1 mmol) was added, and stirred at r.t. for indicated time in Table  [²] , then sat. NH4Cl (1 mL) was added to quench the reaction. The aqueous layer was separated and further extracted with EtOAc, the organic layers were combined and dried. Evaporation of the solvent gave the crude product, which was further purified by preparative TLC (PE-EtOAc = 10:1) to give corresponding α-hydroxy esters.