Synlett 2011(14): 2005-2008  
DOI: 10.1055/s-0030-1261172
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Novel Short-Step Synthesis of New Xanthenedione Derivatives from the Cyclization of 3-Cinnamoyl-2-styrylchromones

Diana C. G. A. Pintoa, Ana M. L. Secaa,b, Stéphanie B. Leala, Artur M. S. Silva*a, José A. S. Cavaleiroa
a Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: artur.silva@ua.pt; e-Mail: diana@ua.pt;
b DCTD, University of Azores, 9501-801 Ponta Delgada, Azores
Further Information

Publication History

Received 13 June 2011
Publication Date:
10 August 2011 (online)

Abstract

Novel (E)-3-aryl-4-benzylidene-8-hydroxy-3,4-dihydro-1H-xanthene-1,9(2H)-diones are prepared by the cyclization of (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones efficiently catalyzed with boron tribromide. The (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones are obtained from the Baker-Venkataraman rearrangement of (E,E)-2-acetyl-1,3-phenylene bis(3-phenylacrylate), which is greatly improved under microwave irradiation.

    References and Notes

  • 1a Roberts JC. Chem. Rev.  1961,  38:  591 
  • 1b Gales L. Damas AM. Curr. Med. Chem.  2005,  12:  2499 
  • 2 Park HH. Park Y.-D. Han J.-M. Im K.-R. Lee BW. Jeong IY. Jeong T.-S. Lee WS. Bioorg. Med. Chem. Lett.  2006,  16:  5580 
  • 3a Shadid KA. Shaari K. Abas F. Israf DA. Hamzah AS. Syakroni N. Saha K. Lajis NHj. Phytochemistry  2007,  68:  2537 
  • 3b Ee GCL. Daud S. Izzaddin SA. Rahmani M. J. Asian Nat. Prod. Res.  2008,  10:  475 
  • 4 Suvarnakuta P. Chaweerungrat C. Devahastin S. Food Chem.  2011,  125:  240 
  • 5 Chiang Y.-M. Kuo Y.-H. Oota S. Fukuyama Y. J. Nat. Prod.  2003,  66:  1070 
  • 6 Azebaze AGB. Meyer M. Valentin A. Nguemfo EL. Fomum ZT. Nkengfack AE. Chem. Pharm. Bull.  2006,  54:  111 
  • 7 An TY. Hu LH. Chen ZL. Chin. Chem. Lett.  2002,  13:  623 
  • 8a Brito-Arias M. Tapia-Albarrán M. Padilla-Martínez I. Martínez-Martínez F. Espinosa G. Molins E. Espinosa E. J. Chem. Crystallogr.  1999,  29:  759 
  • 8b Karthikeyan G. Pandurangan A. J. Mol. Catal. A: Chem.  2009,  311:  36 
  • 8c Pore DM. Shaikh TS. Patil NG. Dongare SB. Desai UV. Synth. Commun.  2010,  40:  2215 
  • 9 Gabbutt CD. Hepworth JD. Urquhart MWJ. Miguel LMV. J. Chem. Soc., Perkin Trans. 1  1997,  1819 
  • 10a Gerwick WH. Lopez A. Van Duyne GD. Clardy J. Ortiz W. Baez A. Tetrahedron Lett.  1986,  27:  1979 
  • 10b Gerwick WH. J. Nat. Prod.  1989,  52:  252 
  • 11 Yoon JS. Lee MK. Sung SH. Kim YC. J. Nat. Prod.  2006,  69:  290 
  • 12 Rocha-Pereira J. Cunha R. Pinto DCGA. Silva AMS. Nascimento MSJ. Bioorg. Med. Chem.  2010,  18:  4195 
  • 13 Gomes A. Fernandes E. Silva AMS. Pinto DCGA. Santos CMM. Cavaleiro JAS. Lima JLFC. Biochem. Pharmacol.  2009,  78:  171 
  • 14 Gomes A. Neuwirth O. Freitas M. Couto D. Ribeiro D. Figueiredo AGPR. Silva AMS. Seixas RSGR. Pinto DCGA. Tomé AC. Cavaleiro JAS. Fernandes E. Lima JLFC. Bioorg. Med. Chem.  2009,  17:  7218 
  • 15 Gomes A. Fernandes E. Garcia MBQ. Silva AMS. Pinto DCGA. Santos CMM. Cavaleiro JAS. Lima JLFC. Bioorg. Med. Chem.  2008,  16:  7939 
  • 16 Pinto DCGA. Silva AMS. Cavaleiro JAS. New J. Chem.  2000,  24:  85 
  • 17 Königs P. Neumann O. Kataeva O. Schnakenburg G. Waldvogel S. Eur. J. Org. Chem.  2010,  6417 
  • 18 Pinto DCGA. Silva AMS. Cavaleiro JAS. Synlett  2007,  1897 
  • 24a Baker W. J. Chem. Soc.  1933,  1381 
  • 24b Gualati KC. Venkataraman K. J. Chem. Soc.  1933,  942 
  • 25 Bellur E. Langer P. J. Org. Chem.  2005,  70:  3819 
19

Optimized Experimental Procedure
A two-necked flask equipped with a magnetic stirring bar, fibre-optic temperature control, and reflux condenser was charged with a mixture of the appropriate (E,E)-2-acetyl-1,3-phenylene bis(3-phenylacrylate) 7a-g (1 mmol) and anhyd K2CO3 (28 mg, 2 mmol) in anhyd pyridine (10 mL) and was then irradiated in an Ethos SYNTH microwave (Milestone Inc.) at constant power of 400 W for 17 min. After this period the reaction mixture was poured onto a mixture of ice (10 g) and H2O (20 mL), and the pH was adjusted to 2 with dilute HCl. The so-formed solids (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones 8a-g were filtered off. In the case of compounds 8d and 8f a column chromatography purification, using CH2Cl2 as eluent, was necessary; 8a, 378 mg, 96%; 8b, 409 mg, 97%; 8c, 445 mg, 98%; 8d, 301 mg, 65%; 8e, 422 mg, 93%; 8f, 287 mg, 62%; 8g, 443 mg, 86%.

20

Physical Data of 5-Hydroxy-3′,4′-dimethoxy-3-(3,4-dimethoxycinnamoyl)-2-styrylchromone (8g)
Mp 208-211 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 3.93 (s, 4 × 3 H, 3′,4′,3′′,4′′-OCH3), 6.84 (dd, 1 H, J = 0.7, 8.2 Hz, H-6), 6.88 (d, 1 H, J = 8.3 Hz, H-5′′), 6.89 (d, 1 H, J = 8.3 Hz, H-5′), 6.90 (d, 1 H, J = 15.8 Hz, H-α), 7.02 (dd, 1 H, J = 0.7, 8.2 Hz, H-8), 7.07 (d, 1 H, J = 1.8 Hz, H-2′), 7.10 (d, 1 H, J = 15.8 Hz, H-α′), 7.13 (d, 1 H, J = 1.8 Hz,
H-2′′), 7.20 (dd, 2 H, J = 1.8, 8.3 Hz, H-6′,6′′), 7.59 (t, 1 H, J = 8.2 Hz, H-7), 7.62 (d, 1 H, J = 15.8 Hz, H-β′), 7.75 (d, 1 H, J = 15.8 Hz, H-β), 12.50 (s, 1 H, 5-OH) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 56.0 (3′,4′,3′′,4′′-OCH3), 106.7 (C-8), 109.9 and 110.1 (C-2′ and/or C-2′′), 110.5 (C-10), 111.0 and 111.1 (C-5′ and/or C-5′′), 111.8 (C-6), 115.1 (C-α), 120.3 (C-3), 123.1 (C-6′), 123.8 (C-6′′), 125.4 (C-α′), 127.3 (C-1′′), 127.8 (C-1′), 135.8 (C-7), 140.7 (C-β), 145.3 (C-β′), 149.2 and 149.3 (C-3′ and/or C-3′′), 151.5 and 151.7 (C-4′ and/or C-4′′), 155.4 (C-9), 161.0 (C-5), 162.6 (C-2), 181.6 (C-4), 190.9 (C=O) ppm. MS (ESI+): m/z (%) = 515 (60) [M + H]+, 537 (100) [M + Na]+, 553 (45) [M + K]+. HRMS (EI): m/z calcd for [C30H26O8]+: 514.1628; found: 514.1639.

21

Optimized Experimental Procedure
A CH2Cl2 solution of BBr3 (2 mmol) was slowly added to a solution of the appropriate (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromone 8a-g (0.4 mmol) in anhyd CH2Cl2 (20 mL) at low temperature (-78 ˚C). After the addition, the cooling system was removed, and the reaction mixture was stirred at r.t. for 3 h (8 h for 8d and 8f and 22 h for 8g). Then, H2O
(80 mL) was added, and the resulting reaction mixture was stirred at r.t. for 3-4 h. The mixture was extracted with CHCl3 (3 × 80 mL) and the combined extracts evaporated and purified by TLC, using CH2Cl2 as eluent (except in the case of compound 9g which was filtered off): 9a, 99 mg, 63%; 9b, 150 mg, 89%; 9c, 118 mg, 69%; 9d, 95 mg, 51%; 9e, 70 mg, 41%; 9f, 69 mg, 37%; 9g, 148 mg, 81%.

22

Physical Data of ( E )-8-Hydroxy-4-(4-hydroxy-benzylidene)-3-(4-hydroxyphenyl)-3,4-dihydro-1 H -xanthene-1,9 (2 H )-dione (9c)
Mp 319-320 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 2.69 (dd, 1 H, J = 2.2, 14.8 Hz, H-2 trans ), 3.23 (dd, 1 H, J = 5.9, 14.8 Hz, H-2 cis ), 4.66 (dd, 1 H, J = 2.2, 5.9 Hz, H-3), 6.72 (br d, 2 H, J = 8.6 Hz, H-3′,5′), 6.83 (d, 2 H, J = 8.7 Hz, H-3′′,5′′), 6.84 (dd, 1 H, J = 0.9, 8.3 Hz, H-7), 7.12 (br d, 2 H, J = 8.6 Hz, H-2′,6′), 7.29 (dd, 1 H, J = 0.9, 8.3 Hz, H-5), 7.37 (d, 2 H, J = 8.7 Hz, H-2′′,6′′), 7.72 (t, 1 H, J = 8.3 Hz, H-6), 8.18 (s, 1 H, H-7′′), 9.57 (s, 1 H, 4′-OH), 10.50 (s, 1 H, 4′′-OH), 12.71 (s, 1 H, 8-OH) ppm. ¹³C NMR (75.47 MHz, DMSO-d 6): δ = 39.2 (C-3), 46.4 (C-2), 107.7 (C-5), 110.4 (C-8a), 111. 9 (C-7), 112.5 (C-9a), 116.0 (C-3′′,5′′), 115.9 (C-3′,5′), 125.2 (C-1′′), 125.7 (C-4), 128.1 (C-2′,6′), 130.8 (C-1′), 132.7 (C-2′′,6′′), 136.4 (C-6), 139.4 (C-7′′), 154.6 (C-4b), 156.5 (C-4′), 160.0 (C-4′′), 160.6 (C-8), 169.9 (C-4a), 179.8 (C-9), 191.8 (C-1) ppm. MS (ESI+): m/z (%) = 427 (15) [M + H]+, 449 (100) [M + Na]+, 465 (10) [M + K]+. HRMS (EI): m/z calcd for [C26H18O6]+: 426.1103; found: 426.1116.

23

Physical Data of ( E )-4-(4-Chlorobenzylidene)-3-(4-chlorophenyl)-8-hydroxy-3,4-dihydro-1 H -xanthene-1,9 (2 H )-dione (9d)
Mp 110-113 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 3.05 (dd, 1 H, J = 2.5, 15.5 Hz, H-2 trans ), 3.15 (dd, 1 H, J = 5.6, 15.5 Hz, H-2 cis ), 4.68 (dd, 1 H, J = 2.5, 5.6 Hz, H-3), 6.84 (dd, 1 H, J = 0.6, 8.4 Hz, H-7), 7.02 (dd, 1 H, J = 0.6, 8.4 Hz, H-5), 7.19 (br d, 2 H, J = 8.4 Hz, H-2′,6′), 7.26 (d, 2 H, J = 8.6 Hz, H-2′′,6′′), 7.30 (br d, 2 H, J = 8.4 Hz, H-3′,5′), 7.37 (d, 2 H, J = 8.6 Hz, H-3′′,5′′), 7.59 (t, 1 H, J = 8.4 Hz, H-6), 8.06 (s, 1 H, H-7′′), 12.54 (s, 1 H, 8-OH) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 39.8 (C-3), 45.5 (C-2), 106.8 (C-5), 111.0 (C-8a), 112. 9 (C-7), 113.6 (C-9a), 128.3 (C-2′,6′), 129.3 (C-3′′,5′′), 129.6 (C-3′,5′), 129.7 (C-4), 130.7 (C-2′′,6′′), 132.4 (C-1′′), 133.7 (C-4′), 136.2 (C-6 and C-4′′), 137.9 (C-7′′), 138.3 (C-1′), 154.7 (C-4b), 161.7 (C-8), 168.7 (C-4a), 180.0 (C-9), 190.7 (C-1) ppm. MS (ESI+): m/z (%) = 463 (70) [(M + H)+, ³5Cl], 465 (40) [(M + H)+, ³5Cl³7Cl], 467 (7) [(M + H)+, ³7Cl], 485 (75) [(M + Na)+, ³5Cl], 487 (45) [(M + Na)+, ³5Cl³7Cl], 489 (8) [(M + Na)+, ³7Cl], 501 (15) [(M + K)+, ³5Cl], 503 (10) [(M + K)+, ³5Cl³7Cl], 505 (2) [(M + K)+, ³7Cl]. Anal. Calcd (%) for C26H16Cl2O4˙0.5H2O (456.32): C, 66.12; H, 3.63. Found: C, 66.05; H, 3.58. HRMS (EI): m/z calcd for [C26H16 ³5Cl2O4]+: 462.0426; found: 462.0406; m/z calcd for [C26H16 ³5Cl³7ClO4]+: 464.0396; found: 464.0374; m/z calcd for [C26H16 ³7Cl2O4]+: 466.0367; found: 466.0384.