Synlett 2011(13): 1930-1936  
DOI: 10.1055/s-0030-1260968
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Copper-Catalyzed Synthesis of Fused Pyridoquinazolones

Lujun Chena,b, Hua Fu*a, Renzhong Qiao*b
a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
Fax: +86(10)62781695; e-Mail: fuhua@mail.tsinghua.edu.cn;
b State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China
e-Mail: qiaorz@mail.buct.edu.cn;
Further Information

Publication History

Received 18 April 2011
Publication Date:
21 July 2011 (online)

Abstract

A simple and efficient copper-catalyzed method for synthesis of fused pyridoquinazolones has been developed without ­addition of any ligand or additive, and it can tolerate various functional groups.

    References and Notes

  • 1 DeSimone RW. Currie KS. Mitchell SA. Darrow JW. Pippin DA. Comb. Chem. High Throughput Screening  2004,  7:  473 
  • 2 Leeson PD. Springthorpe B. Nat. Rev. Drug Discovery  2007,  6:  881 
  • 3a Ma Z.-Z. Hano Y. Nomura T. Chen Y.-J. Heterocycles  1997,  46:  541 
  • 3b Yoshida S. Aoyagi T. Harada S. Matsuda N. Ikeda T. Naganawa H. Hamada M. Takeuchi T. J. Antibiot.  1991,  44:  111 
  • 3c Deng Y. Xu R. Ye Y. J. Chin. Pharm. Sci.  2000,  9:  116 
  • 3d Wattanapiromsakul C. Forster PI. Waterman PG. Phytochemistry  2003,  64:  609 
  • 4a Horton DA. Bourne GT. Smythe ML. Chem. Rev.  2003,  103:  893 
  • 4b Mhaske SB. Argade NP. Tetrahedron  2006,  62:  9787 ; and references cited therein
  • 5 Sinha S. Srivastava M. Prog. Drug Res.  1994,  43:  143 
  • 6 de Laszlo SE. Quagliato CS. Greenlee WJ. Patchett AA. Chang RSL. Lotti VJ. Chen T.-B. Scheck SA. Faust KA. Kivlighn SS. Schorn TS. Zingaro GJ. Siegl PKS. J. Med. Chem.  1993,  36:  3207 
  • 7 Liverton NJ. Armstrong DJ. Claremon DA. Remy DC. Baldwin JJ. Lynch RJ. Zhang G. Gould RJ. Bioorg. Med. Chem. Lett.  1998,  8:  483 
  • 8 Zhang W. Mayer JP. Hall SE. Weigel JA. J. Comb. Chem.  2001,  3:  255 
  • 9 Witt A. Bergman J. Curr. Org. Chem.  2003,  7:  659 ; and references cited therein
  • Selected examples, see:
  • 10a Griess P. Ber. Dtsch. Chem. Ges.  1869,  2:  415 
  • 10b Griess P. Ber. Dtsch. Chem. Ges.  1878,  11:  1985 
  • 10c von Niementowski S. J. Prakt. Chem.  1895,  51:  564 
  • 10d Liu J.-F. Ye P. Zhang B. Bi G. Sargent K. Yu L. Yohannes D. Baldino CM. J. Org. Chem.  2005,  70:  6339 
  • 10e Liu J.-F. Kaselj M. Isome Y. Ye P. Sargent K. Sprague K. Cherrak D. Wilson CJ. Si Y. Yohannes D. Ng S.-C. J. Comb. Chem.  2006,  8:  7 
  • 10f Roy AD. Subramanian A. Roy R. J. Org. Chem.  2006,  71:  382 
  • 10g Yoo CL. Fettinger JC. Kurth MJ. J. Org. Chem.  2005,  70:  6941 
  • 10h Kamal A. Reddy KS. Prasad BR. Babu AH. Ramana AV. Tetrahedron Lett.  2004,  45:  6517 
  • 10i Larksarp C. Alper H. J. Org. Chem.  2000,  65:  2773 
  • 11a Timári C. Hajós G. Messmer A. J. Heterocycl. Chem.  1990,  27:  2005 
  • 11b Nosova EV. Laeva AA. Trashakhova TV. Golovchenko AV. Lipunova GN. Slepukhin PA. Charushin VN. Russ. J. Org. Chem.  2009,  45:  904 
  • 12 Nosova V. Liponova GN. Kravchenko MA. Laeva AA. Charushin VN. Pharm. Chem. J.  2008,  42:  169 
  • For recent reviews on copper-catalyzed cross-couplings, see:
  • 13a Ma D. Cai Q. Acc. Chem. Res.  2008,  41:  1450 
  • 13b Kunz K. Scholz U. Ganzer D. Synlett  2003,  2428 
  • 13c Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 13d Beletskaya IP. Cheprakov AV. Coord. Chem. Rev.  2004,  248:  2337 
  • 13e Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 13f Monnier F. Taillefer M. Angew. Chem. Int. Ed.  2009,  48:  6954 
  • 13g Rao H. Fu H. Synlett  2011,  745 ; and references cited therein
  • For selected examples:
  • 13h Klapars A. Antilla JC. Huang X. Buchwald SL. J. Am. Chem. Soc.  2001,  123:  7727 
  • 13i Antilla JC. Klapars A. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  11684 
  • 13j Okano K. Tokuyama H. Fukuyama T. Org. Lett.  2003,  5:  4987 
  • 13k Gujadhur RK. Bates CG. Venkataraman D. Org. Lett.  2001,  3:  4315 
  • 13l Gajare AS. Toyota K. Yoshifuji M. Yoshifuji F. Chem. Commun.  2004,  1994 
  • 13m Ma D. Zhang Y. Yao J. Wu S. Tao F. J. Am. Chem. Soc.  1998,  120:  12459 
  • 13n Ma D. Cai Q. Zhang H. Org. Lett.  2003,  5:  2453 
  • 13o Zhu L. Cheng L. Zhang Y. Xie R. You J. J. Org. Chem.  2007,  72:  2737 
  • For recent studies on the synthesis of N-heterocycles through Ullmann-type couplings, see:
  • 14a Martin R. Rivero MR. Buchwald SL. Angew. Chem. Int. Ed.  2006,  45:  7079 
  • 14b Evindar G. Batey RA. J. Org. Chem.  2006,  71:  1802 
  • 14c Bonnaterre F. Bois-Choussy M. Zhu J. Org. Lett.  2006,  8:  4351 
  • 14d Zou B. Yuan Q. Ma D. Angew. Chem. Int. Ed.  2007,  46:  2598 
  • 14e Wang B. Lu B. Jiang Y. Ma D. Org. Lett.  2008,  10:  2761 
  • Selected examples for copper-catalyzed cross-couplings, see:
  • 15a Rao H. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2005,  70:  8107 
  • 15b Rao H. Jin Y. Fu H. Jiang Y. Zhao Y. Chem. Eur. J.  2006,  12:  3636 
  • 15c Jiang D. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2007,  72:  672 
  • 15d Guo X. Rao H. Fu H. Jiang Y. Zhao Y. Adv. Synth. Catal.  2006,  348:  2197 
  • 15e Rao H. Fu H. Jiang Y. Zhao Y. Angew. Chem. Int. Ed.  2009,  48:  1114 
  • Selected examples for copper-catalyzed synthesis of N-heterocycles, see:
  • 16a Liu X. Fu H. Jiang Y. Zhao Y. Angew. Chem. Int. Ed.  2009,  48:  348 
  • 16b Huang C. Fu Y. Fu H. Jiang Y. Zhao Y. Chem. Commun.  2008,  6333 
  • 16c Yang D. Fu H. Hu L. Jiang Y. Zhao Y. J. Org. Chem.  2008,  73:  7841 
  • 16d Yang D. Liu H. Yang H. Fu H. Hu L. Jiang Y. Zhao Y. Adv. Synth. Catal.  2009,  351:  1999 
  • 16e Wang F. Liu H. Fu H. Jiang Y. Zhao Y. Org. Lett.  2009,  11:  2469 
  • 16f Lu J. Gong X. Yang H. Fu H. Chem. Commun.  2010,  46:  4172 
  • 16g Yang X. Fu H. Qiao R. Jiang Y. Zhao Y. Adv. Synth. Catal.  2010,  352:  1033 
  • 16h Gong X. Yang H. Liu H. Jiang Y. Zhao Y. Fu H. Org. Lett.  2010,  12:  3128 
  • 18a Nicolaou KC. Boddy CNC. Natarajar S. Yue T.-Y. Li H. Bräse S. Ramanjulu JM. J. Am. Chem. Soc.  1997,  119:  3421 
  • 18b Kalinin AV. Bower JF. Riebel P. Snieckus V. J. Org. Chem.  1999,  64:  2986 
  • 18c Cai Q. Zou B. Ma D. Angew. Chem. Int. Ed.  2006,  45:  1276 
17

General Procedure for the Synthesis of Compounds 2a-n A two-necked, round-bottom flask was charged with a magnetic stirrer, evacuated, and back-filled with nitrogen. Substituted 2-halo-N-(pyridin-2-yl)arylamide (1) (0.5 mmol), Cs2CO3 (1 mmol, 326 mg), and toluene (2 mL) were added to the flask. After a 10 min stirring at r.t. under nitrogen atmosphere, CuI (0.025 mmol, 5 mg) was added to the flask. The mixture was stirred at 110 ˚C for 24 or 36 h (see Table  [²] in text) under nitrogen atmosphere. After completion of the reaction, the solvent of the resulting mixture was removed with the aid of a rotary evaporator, and the residue was purified by column chromatography on silica gel using PE-EtOAc as eluent to give the desired product.