Subscribe to RSS
DOI: 10.1055/s-0030-1260959
Synthetic Studies toward the Bicyclic Peroxylactone Core of Plakortolides
Publication History
Publication Date:
21 July 2011 (online)
Abstract
En route to the synthesis of plakortolide E and I, we prepared a β-hydroperoxy vinyl epoxide, obtained from (R)-epichlorhydrin in 13 steps and 30% yield, via chemoselective methylenation with Nysted reagent in the presence of Ti(Oi-Pr)2Cl2 and regioselective Mukaiyama-Isayama hydroperoxysilylation. Unexpectedly, acid-catalyzed cyclization of this peroxy epoxide occurred exclusively through a 5-exo mode to furnish a 1,2-dioxolane; this is in contrast to the behavior of hydroxy analogues.
Key words
cyclization - endoperoxides - hydroperoxysilylation - plakortolides
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Casteel AN. Nat. Prod. Rep. 1999, 16: 55 -
1b
Rahm F.Hayes PY.Kitching W. Heterocycles 2004, 523 -
2a
Davidson BS. Tetrahedron Lett. 1992, 32: 7167 -
2b
Horton PA.Longley RE.Kelly-Borges M.McConnell OJ.Ballas LM. J. Nat. Prod. 1994, 57: 1374 -
2c
Varoglu M.Peters BM.Crews P. J. Nat. Prod. 1995, 58: 27 -
2d
Qureshi A.Salva J.Harper MK.Faulkner DJ. J. Nat. Prod. 1998, 61: 1539 -
2e
Williams DE.Allen TM.Van Soest R.Behrisch HW.Andersen RJ. J. Nat. Prod. 2001, 64: 281 -
2f
Perry TL.Dickerson A.Khan AA.Kondru RK.Beratan DN.Wipf P.Kelly M.Hamann MT. Tetrahedron 2001, 57: 1483 -
2g
Chen Y.Killday KB.McCarthy PJ.Schemoler R.Chilson K.Selitrennikoff C.Pomponi SA.Wright AE. J. Nat. Prod. 2001, 64: 262 -
2h
Rudi A.Afanii R.Gravalos LG.Aknin M.Gaydou E.Vacelet J.Kashman Y. J. Nat. Prod. 2003, 66: 682 -
2i
Jimenez-Romero C.Ortiz I.Vincente J.Vera B.Rodrigue AD.Nam S.Jove R. J. Nat. Prod. 2010, 73: 1694 -
2j
Yong KWL.De Voss JJ.Hooper JNA.Garson MJ. J. Nat. Prod. 2011, 74: 194 - 3
Jung M.Ham J.Song J. Org. Lett. 2002, 4: 2763 - 4
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734 - 5
Doan HD.Gallon J.Piou A.Vatèle J.-M. Synlett 2007, 983 -
6a
Porter NA.Funk MO.Gilmore D.Isaac R.Nixon J. J. Am. Soc. 1976, 98: 6000 -
6b
Xu X.-X.Dong H.-Q.
J. Org. Chem. 1995, 60: 3039 -
6c
Ushigoe Y.Masuyama A.Nojima M.McCullough K. Tetrahedron Lett. 1997, 38: 8753 -
6d
Gemma S.Marti F.Gabellieri E.Campiani G.Novellino E.Butini S. Tetrahedron Lett. 2009, 50: 5719 -
6e
Gemma S.Gabellieri E.Coccone SS.Marti F.Taglialatela-Scafati O.Novellino E.Campiani G.Butini S. J. Org. Chem. 2010, 75: 2333 - 8
Hay TS.Yamada T.Tsai PL.Buzzelli JW. J. Phys. Chem. A 1997, 101: 2471 -
9a
Saito L.Nittala SS. In The Chemistry of PeroxidesPatai S. Wiley; Chichester: 1983. p.311 -
9b
Dussault PH.Eary CT.Woller KR. J. Org. Chem. 1999, 64: 1789 -
9c
Szpilman AM.Korshin EE.Hoss R.Posner GH.Bachi MD. J. Org. Chem. 2001, 66: 6531 -
9d
Jin H.-X.Liu H.-H.Zhang Q.Wu Y. J. Org. Chem. 2005, 70: 4240 -
9e
Griesbeck AG.Cho M. Tetrahedron Lett. 2009, 50: 121 -
10a
Isayama S.Mukaiyama T. Chem. Lett. 1989, 573 -
10b
Isayama S. Bull. Chem. Soc. Jpn. 1990, 63: 1305 - 11
O’Neill PM.Hindley S.Pugh MD.Davies J.Bray PG.Park BK.Kapu DS.Ward SA.Stocks PA. Tetrahedron Lett. 2003, 44: 8135 -
12a
Oh CH.Kim HJ.Wu SH.Won HS. Tetrahedron Lett. 1999, 40: 8391 -
12b
Tokuyasu T.Kunikawa S.McCullough KJ.Masuyama A.Nojima M. J. Org. Chem. 2005, 70: 251 -
12c
Silva EMP.Pye RJ.Cardin C.Harwood LM. Synlett 2010, 509 - 13
Görgen G.Boland W.Preiss U.Simon H. Helv. Chim. Acta 1989, 72: 917 - 14
Yamaguchi M.Hirao I. Tetrahedron Lett. 1983, 24: 391 - 15
Corey EJ.Katzenellenbogen J. J. Am. Chem. Soc. 1969, 91: 1851 - For examples of substituted pentenolide epoxidation, see:
-
16a
Takano S.Shimazaki Y.Sekiguchi Y.Ogasawara K. Synthesis 1989, 539 -
16b
Yadav VK.Kapoor KK. Tetrahedron 1995, 51: 8573 -
16c
Reddy MVR.Brown HC.Ramachandran PV. J. Organomet. Chem. 2001, 624: 239 -
16d
Sawant KB.Jennings MP. J. Org. Chem. 2006, 71: 7911 -
16e
Ding J.Jennings MP. J. Org. Chem. 2008, 73: 5965 - 17
Petasis NA.Bzowej EI. J. Am. Chem. Soc. 1990, 112: 6392 - 18 For a review on titanium carbenoid
reagents, see:
Hartley RC.Li J.Main CA.McKierran GJ. Tetrahedron 2007, 63: 4825 - 19
Lee DG.Congson LN.Spitzer UA.Olson ME. Can. J. Chem. 1984, 62: 1835 ; and references cited therein -
20a
Lombardo L. Tetrahedron Lett. 1982, 23: 4293 -
20b
Lombardo L. Org. Synth. 1987, 65: 81 - 21
Okazoe K.Hibino J.-I.Takai K.Nozaki H. Tetrahedron Lett. 1985, 26: 5581 - 22
Tebbe FN.Parshall GW.Reddy GS. J. Am. Chem. Soc. 1978, 100: 3611 - 23 For Cp2TiCl2-catalyzed
methylenation with Petasis reagent, see:
Payak JF.Huffman MA.Cai D.Hughes DL.Collins PC.Johnson BK.Cottrell IF.Tuma LD. Org. Process Res. Dev. 2004, 8: 256 -
24a
Tochtermann W.Bruhn S.Meints M.Wolff C.Peters EM.von Schnering HG. Tetrahedron 1995, 51: 1623 -
24b
Matsubara S.Sugihara M.Utimoto K. Synlett 1998, 313 - 27 For the use of these acid conditions
in the 6-endo cyclization of epoxy alcohols,
see:
Chapelat J.Buss A.Chougnet A.Woggon W.-D. Org. Lett. 2008, 10: 5123 -
28a
Nicolaou KC.Prasad CVC.Somers PK.Hwang C.-K. J. Am. Chem. Soc. 1989, 111: 5330 -
28b
Ha JD.Shin EY.Chung Y.Choi J.-K. Bull. Korean Chem. Soc. 2003, 24: 1567 -
29a
Davidson BS. J. Org. Chem. 1991, 56: 6722 -
29b
Chen Y.McCarthy PJ.Harmody DK.Schimoler-O’Rourke R.Chilson K.Selitrennikoff C.Pomponi SA.Wright AE. J. Nat. Prod. 2002, 65: 1509
References and Notes
In a recent paper on the isolation and structure elucidation of new plakortolides, Yong et al.²j compared the NMR data of newly isolated plakortolides and plakortolide E. They noted inconsistencies between the reported structure of plakortolide E and of its ¹H NMR and ¹³C NMR data.²c They suggested that these data are those of seco-plakortolide E.
25
Procedure for
the Chemoselective Methylenation of Compound 14
To
a stirred solution of ketone 14 (0.219
g, 0.585 mmol) in dry THF (8 mL) was added Nysted reagent (20% in
THF, 3.51 mL, 1.83 mmol), purchased from Aldrich, at 0 ˚C
under N2 atmosphere followed by dropwise addition of
TiCl2(Oi-Pr)2 (2.
5 equiv), prepared from TiCl4 (1 M in CH2Cl2;
0.73 mL, 0.73 mmol) and Ti(Oi-Pr)4 (0.217
mL, 0.73 mmol). The reaction mixture was then allowed to reach 15 ˚C
and stirred for 15 min. The reaction mixture was cooled to 0 ˚C,
treated carefully with H2O (1 mL) and extracted with
Et2O (5 × 8 mL). The combined
organic layers were washed with sat. NaHCO3 solution
and brine. The ethereal solution was filtered through a small pad
of silica gel to remove metal species, dried (Na2SO4),
and concentrated in vacuo. The residue was chromatographed on silica
gel (Et2O-PE, 1:5) to furnish 15 (0.153
g, 70%) as a colorless oil; [α]D
²0 -29.2
(c 1, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 1.26 (br,
m, 14 H), 1.38 (s, 3 H), 1.60 (m, 2 H), 1.95 (m, 2 H), 2.35 (d, J = 15 Hz,
1 H), 2.41 (d, J = 15
Hz, 1 H), 2.59 (t, J = 8.1
Hz, 2 H), 3.37 (s, 1 H), 3.76 (s, 3 H), 4.79 (s, 1 H), 4.85 (s,
1 H), 7.16-7.29 (m, 5 H). ¹³C
NMR (100 MHz, CDCl3): δ = 21.8, 27.6, 29.4-29.7
(6C), 31.6, 36.1, 36.3, 39.0, 52.3, 59.0, 62.2, 112.2, 125.6, 128.3
(2 C), 128.5 (2 C), 143.0, 145.3, 169.0. IR (neat): 1646, 1736,
1757, 2854, 2927, 3026 cm-¹. ESI-HRMS: m/z calcd for C24H36NaO3 [MNa]+:
395.2557; found: 395.2557.
No 6-endo product was detected by ¹H NMR of the crude mixture.