Synlett 2011(13): 1912-1916  
DOI: 10.1055/s-0030-1260959
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthetic Studies toward the Bicyclic Peroxylactone Core of Plakortolides

Bogdan Barnych, Jean-Michel Vatèle*
Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Equipe SURCOOF, bât. Raulin, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
e-Mail: vatele@univ-lyon1.fr;
Further Information

Publication History

Received 11 April 2011
Publication Date:
21 July 2011 (online)

Abstract

En route to the synthesis of plakortolide E and I, we prepared a β-hydroperoxy vinyl epoxide, obtained from (R)-epi­chlorhydrin in 13 steps and 30% yield, via chemoselective methylenation with Nysted reagent in the presence of Ti(Oi-Pr)2Cl2 and regioselective Mukaiyama-Isayama hydroperoxysilylation. Unexpectedly, acid-catalyzed cyclization of this peroxy epoxide occurred exclusively through a 5-exo mode to furnish a 1,2-dioxolane; this is in contrast to the behavior of hydroxy analogues.

    References and Notes

  • 1a Casteel AN. Nat. Prod. Rep.  1999,  16:  55 
  • 1b Rahm F. Hayes PY. Kitching W. Heterocycles  2004,  523 
  • 2a Davidson BS. Tetrahedron Lett.  1992,  32:  7167 
  • 2b Horton PA. Longley RE. Kelly-Borges M. McConnell OJ. Ballas LM. J. Nat. Prod.  1994,  57:  1374 
  • 2c Varoglu M. Peters BM. Crews P. J. Nat. Prod.  1995,  58:  27 
  • 2d Qureshi A. Salva J. Harper MK. Faulkner DJ. J. Nat. Prod.  1998,  61:  1539 
  • 2e Williams DE. Allen TM. Van Soest R. Behrisch HW. Andersen RJ. J. Nat. Prod.  2001,  64:  281 
  • 2f Perry TL. Dickerson A. Khan AA. Kondru RK. Beratan DN. Wipf P. Kelly M. Hamann MT. Tetrahedron  2001,  57:  1483 
  • 2g Chen Y. Killday KB. McCarthy PJ. Schemoler R. Chilson K. Selitrennikoff C. Pomponi SA. Wright AE. J. Nat. Prod.  2001,  64:  262 
  • 2h Rudi A. Afanii R. Gravalos LG. Aknin M. Gaydou E. Vacelet J. Kashman Y. J. Nat. Prod.  2003,  66:  682 
  • 2i Jimenez-Romero C. Ortiz I. Vincente J. Vera B. Rodrigue AD. Nam S. Jove R. J. Nat. Prod.  2010,  73:  1694 
  • 2j Yong KWL. De Voss JJ. Hooper JNA. Garson MJ. J. Nat. Prod.  2011,  74:  194 
  • 3 Jung M. Ham J. Song J. Org. Lett.  2002,  4:  2763 
  • 4 Baldwin JE. J. Chem. Soc., Chem. Commun.  1976,  734 
  • 5 Doan HD. Gallon J. Piou A. Vatèle J.-M. Synlett  2007,  983 
  • 6a Porter NA. Funk MO. Gilmore D. Isaac R. Nixon J. J. Am. Soc.  1976,  98:  6000 
  • 6b Xu X.-X. Dong H.-Q.
    J. Org. Chem.  1995,  60:  3039 
  • 6c Ushigoe Y. Masuyama A. Nojima M. McCullough K. Tetrahedron Lett.  1997,  38:  8753 
  • 6d Gemma S. Marti F. Gabellieri E. Campiani G. Novellino E. Butini S. Tetrahedron Lett.  2009,  50:  5719 
  • 6e Gemma S. Gabellieri E. Coccone SS. Marti F. Taglialatela-Scafati O. Novellino E. Campiani G. Butini S. J. Org. Chem.  2010,  75:  2333 
  • 8 Hay TS. Yamada T. Tsai PL. Buzzelli JW. J. Phys. Chem. A  1997,  101:  2471 
  • 9a Saito L. Nittala SS. In The Chemistry of Peroxides   Patai S. Wiley; Chichester: 1983.  p.311 
  • 9b Dussault PH. Eary CT. Woller KR. J. Org. Chem.  1999,  64:  1789 
  • 9c Szpilman AM. Korshin EE. Hoss R. Posner GH. Bachi MD. J. Org. Chem.  2001,  66:  6531 
  • 9d Jin H.-X. Liu H.-H. Zhang Q. Wu Y. J. Org. Chem.  2005,  70:  4240 
  • 9e Griesbeck AG. Cho M. Tetrahedron Lett.  2009,  50:  121 
  • 10a Isayama S. Mukaiyama T. Chem. Lett.  1989,  573 
  • 10b Isayama S. Bull. Chem. Soc. Jpn.  1990,  63:  1305 
  • 11 O’Neill PM. Hindley S. Pugh MD. Davies J. Bray PG. Park BK. Kapu DS. Ward SA. Stocks PA. Tetrahedron Lett.  2003,  44:  8135 
  • 12a Oh CH. Kim HJ. Wu SH. Won HS. Tetrahedron Lett.  1999,  40:  8391 
  • 12b Tokuyasu T. Kunikawa S. McCullough KJ. Masuyama A. Nojima M. J. Org. Chem.  2005,  70:  251 
  • 12c Silva EMP. Pye RJ. Cardin C. Harwood LM. Synlett  2010,  509 
  • 13 Görgen G. Boland W. Preiss U. Simon H. Helv. Chim. Acta  1989,  72:  917 
  • 14 Yamaguchi M. Hirao I. Tetrahedron Lett.  1983,  24:  391 
  • 15 Corey EJ. Katzenellenbogen J. J. Am. Chem. Soc.  1969,  91:  1851 
  • For examples of substituted pentenolide epoxidation, see:
  • 16a Takano S. Shimazaki Y. Sekiguchi Y. Ogasawara K. Synthesis  1989,  539 
  • 16b Yadav VK. Kapoor KK. Tetrahedron  1995,  51:  8573 
  • 16c Reddy MVR. Brown HC. Ramachandran PV. J. Organomet. Chem.  2001,  624:  239 
  • 16d Sawant KB. Jennings MP. J. Org. Chem.  2006,  71:  7911 
  • 16e Ding J. Jennings MP. J. Org. Chem.  2008,  73:  5965 
  • 17 Petasis NA. Bzowej EI. J. Am. Chem. Soc.  1990,  112:  6392 
  • 18 For a review on titanium carbenoid reagents, see: Hartley RC. Li J. Main CA. McKierran GJ. Tetrahedron  2007,  63:  4825 
  • 19 Lee DG. Congson LN. Spitzer UA. Olson ME. Can. J. Chem.  1984,  62:  1835 ; and references cited therein
  • 20a Lombardo L. Tetrahedron Lett.  1982,  23:  4293 
  • 20b Lombardo L. Org. Synth.  1987,  65:  81 
  • 21 Okazoe K. Hibino J.-I. Takai K. Nozaki H. Tetrahedron Lett.  1985,  26:  5581 
  • 22 Tebbe FN. Parshall GW. Reddy GS. J. Am. Chem. Soc.  1978,  100:  3611 
  • 23 For Cp2TiCl2-catalyzed methylenation with Petasis reagent, see: Payak JF. Huffman MA. Cai D. Hughes DL. Collins PC. Johnson BK. Cottrell IF. Tuma LD. Org. Process Res. Dev.  2004,  8:  256 
  • 24a Tochtermann W. Bruhn S. Meints M. Wolff C. Peters EM. von Schnering HG. Tetrahedron  1995,  51:  1623 
  • 24b Matsubara S. Sugihara M. Utimoto K. Synlett  1998,  313 
  • 27 For the use of these acid conditions in the 6-endo cyclization of epoxy alcohols, see: Chapelat J. Buss A. Chougnet A. Woggon W.-D. Org. Lett.  2008,  10:  5123 
  • 28a Nicolaou KC. Prasad CVC. Somers PK. Hwang C.-K. J. Am. Chem. Soc.  1989,  111:  5330 
  • 28b Ha JD. Shin EY. Chung Y. Choi J.-K. Bull. Korean Chem. Soc.  2003,  24:  1567 
  • 29a Davidson BS. J. Org. Chem.  1991,  56:  6722 
  • 29b Chen Y. McCarthy PJ. Harmody DK. Schimoler-O’Rourke R. Chilson K. Selitrennikoff C. Pomponi SA. Wright AE. J. Nat. Prod.  2002,  65:  1509 
7

In a recent paper on the isolation and structure elucidation of new plakortolides, Yong et al.²j compared the NMR data of newly isolated plakortolides and plakortolide E. They noted inconsistencies between the reported structure of plakortolide E and of its ¹H NMR and ¹³C NMR data.²c They suggested that these data are those of seco-plakortolide E.

25

Procedure for the Chemoselective Methylenation of Compound 14
To a stirred solution of ketone 14 (0.219 g, 0.585 mmol) in dry THF (8 mL) was added Nysted reagent (20% in THF, 3.51 mL, 1.83 mmol), purchased from Aldrich, at 0 ˚C under N2 atmosphere followed by dropwise addition of TiCl2(Oi-Pr)2 (2. 5 equiv), prepared from TiCl4 (1 M in CH2Cl2; 0.73 mL, 0.73 mmol) and Ti(Oi-Pr)4 (0.217 mL, 0.73 mmol). The reaction mixture was then allowed to reach 15 ˚C and stirred for 15 min. The reaction mixture was cooled to 0 ˚C, treated carefully with H2O (1 mL) and extracted with Et2O (5 × 8 mL). The combined organic layers were washed with sat. NaHCO3 solution and brine. The ethereal solution was filtered through a small pad of silica gel to remove metal species, dried (Na2SO4), and concentrated in vacuo. The residue was chromatographed on silica gel (Et2O-PE, 1:5) to furnish 15 (0.153 g, 70%) as a colorless oil; [α]D ²0 -29.2 (c 1, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 1.26 (br, m, 14 H), 1.38 (s, 3 H), 1.60 (m, 2 H), 1.95 (m, 2 H), 2.35 (d, J = 15 Hz, 1 H), 2.41 (d, J = 15 Hz, 1 H), 2.59 (t, J = 8.1 Hz, 2 H), 3.37 (s, 1 H), 3.76 (s, 3 H), 4.79 (s, 1 H), 4.85 (s, 1 H), 7.16-7.29 (m, 5 H). ¹³C NMR (100 MHz, CDCl3): δ = 21.8, 27.6, 29.4-29.7 (6C), 31.6, 36.1, 36.3, 39.0, 52.3, 59.0, 62.2, 112.2, 125.6, 128.3 (2 C), 128.5 (2 C), 143.0, 145.3, 169.0. IR (neat): 1646, 1736, 1757, 2854, 2927, 3026 cm. ESI-HRMS: m/z calcd for C24H36NaO3 [MNa]+: 395.2557; found: 395.2557.

26

No 6-endo product was detected by ¹H NMR of the crude mixture.