Subscribe to RSS
DOI: 10.1055/s-0030-1260949
Acid-Promoted Aza-Cyclization versus π-Cyclization of N-Acyliminium Species into Fused Pyrrolo[1,2-a]imidazolones and Pyrrolo[2,1-a]isoquinolinones
Publication History
Publication Date:
14 July 2011 (online)
Abstract
A new approach for the synthesis of fused imidazolones and isoquinolinones is presented. The key step of this sequence was the interception of an N-acyliminium species with nitrogen or π-aromatic nucleophiles under kinetic vs. thermodynamic control. In addition, in the presence of two π-aromatic nucleophiles, only the six-membered ring closure into pyrroloisoquinolinones occurred.
Key words
N-acyliminium - diastereoselectivity - aza-cyclization - pyrrolo[1,2-a]imidazolone - pyrrolo[2,1-a]isoquinolinone
- For important reviews in this area, see:
-
1a
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 -
1b
Maryanoff BE.Zhang HC.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431 - For aza-cyclization, see:
-
2a
Fogain-Ninkam A.Daïch A.Netchitaïlo P.Decroix B. Eur. J. Org. Chem. 2003, 427 -
2b
Oukli N.Comesse S.Chafi N.Oulyadi H.Daïch A. Tetrahedron Lett. 2009, 50: 1459 - 3
Cul A.Daïch A.Decroix B.Sanz G.Van Hijfte L. Tetrahedron 2004, 60: 11029 - For oxa-cyclization, see:
-
4a
Mamouni A.Daïch A.Marchalín Š.Decroix B. Heterocycles 2001, 54: 275 -
4b
Sikoraiova J.Chihab-Eddine A.Marchalín Š.Daïch A. J. Heterocycl. Chem. 2002, 39: 383 -
4c
Pesquet A.Van Hijfte L.Daïch A. ARKIVOC 2010, (viii): 27 - 5 See, for example:
Allin SM.Gaskell SN.Elsegood MRJ.Martin WP. J. Org. Chem. 2008, 73: 6448 -
6a
Aeberli P.Houlihan WJ. J. Org. Chem. 1968, 33: 2402 -
6b
Massa S.De Martino G. Farmaco 1978, 33: 271 -
7a
Wijnberg JBPA.Speckamp WN. Tetrahedron 1978, 34: 2399 -
7b
Marino JP.Bogdan S.Kimura K.
J. Am. Chem. Soc. 1992, 114: 5566 -
7c
El Azab AS.Taniguchi T.Ogasawara K. Org. Lett. 2000, 2: 2757 - 8
Lee YS.Kim SH.Jung SH.Lee SJ.Park H. Heterocycles 1994, 37: 303 -
9a
Barbosa YAO.Hart DJ.Magomedov NA. Tetrahedron 2006, 62: 8748 -
9b
Dransfield PJ.Dilley AS.Wang S.Romo D. Tetrahedron 2006, 62: 5223 - 10
Iwamoto O.Koshino H.Hashizume D.Nagasawa K. Angew. Chem. Int. Ed. 2007, 46: 8625 -
11a
Yamagishi M.Yamada Y.Ozaki K.Date T.Okamura K.Suzuki M.Matsumoto K. J. Org. Chem. 1992, 57: 1568 -
11b
Yamagishi M.Yamada Y.Ozaki K.Asao M.Shimizu R.Suzuki M.Matsumoto M.Matsuoka Y.Matsumoto K. J. Med. Chem. 1992, 35: 2085 - 12
Lee S.-C.Park SB. J. Comb. Chem. 2007, 9: 828 -
13a
Surygina O.Ehwald M.Liebscher J. Tetrahedron Lett. 2000, 41: 5479 -
13b
Sieck O.Schaller S.Grimme S.Liebscher J. Synlett 2003, 337 -
14a
Le Quement ST.Nielsen TE.Meldal M. J. Comb. Chem. 2007, 9: 1060 -
14b
Min BJ.Gu X.Yamamoto T.Petrov RR.Qu H.Lee YS.Hruby VJ. Tetrahedron Lett. 2008, 49: 2316 ; and references cited therein -
15a
Sannigrahi M.Pinto P.Chan TM.Shih N.-Y.Njoroge FG. Tetrahedron Lett. 2006, 47: 4877 -
15b
Cayley AN.Gallagher KA.Ménard-Moyon C.Schmidt JP.Diorazio LJ.Taylor RJK. Synthesis 2008, 3846 - 16
Moreau A.Couture A.Deniau E.Grandclaudon P. Eur. J. Org. Chem. 2005, 3437 ; and references cited therein - 17
Lewanowicz A.Lipinski J.Siedlecka R.Skarzewski J.Baert F. Tetrahedron 1998, 54: 6571 - 18
Martinez EJ.Corey EJ. Org. Lett. 2000, 2: 993 - 19
Pin F.Comesse S.Garrigues B.Marchalín Š.Daïch A. J. Org. Chem. 2007, 72: 1181 - 22
Sikoraiova J.Daïch A.Marchalín Š.Decroix B. Tetrahedron Lett. 2002, 43: 4747 -
23a
Polniaszek RP.Belmont SE. J. Org. Chem. 1991, 56: 4868 -
23b
Chihab-Eddine A.Daïch A.Jilale A.Decroix B. Tetrahedron Lett. 2001, 42: 573 -
24a
Meyers AI.Burgess LE. J. Org. Chem. 1991, 56: 2294 -
24b
Burgess LE.Meyers AI. J. Org. Chem. 1992, 57: 1656 ; and references cited therein -
25a
Allin SM.Duffy LJ.Page PCB.McKee V.Edgar M.McKenzie MJ.Amat M.Bassas O.Santos MMM.Bosch J. Tetrahedron Lett. 2006, 47: 5713 -
25b
Amat M.Bassas O.Llor N.Canto M.Perez M.Molins E.Bosch J. Chem. Eur. J. 2006, 12: 7872 -
26a
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734 -
26b
Baldwin J. Tetrahedron 1982, 38: 2939 -
28a
See also the review in ref. 1b:
-
28b
Maryanoff BE.McComsey DF. Tetrahedron Lett. 1979, 3797 -
28c
Maryanoff BE.McComsey DF.Duhl-Emswiler BA. J. Org. Chem. 1983, 48: 5062 -
28d
Ent H.de Koning H.Speckamp WN. J. Org. Chem. 1986, 51: 1687 - 29 For the stereochemical distribution,
see:
Katritzky AR.Mehta S.He H.-Y. J. Org. Chem. 2001, 66: 148
References and Notes
The ratio of both diastereomers 3a,b considered as kinetic products was estimated by ¹H NMR spectroscopy and is different from that of their amidal congeners 9 in a 7:1 ratio.
21
Data for Compound
3b
Isolated in 51% yield as a white solid
(EtOAc-cyclohexane = 1:4); mp 136 ˚C; [α]D -20.9
(c 0.81×10-³,
CH2Cl2).
IR (KBr): νmax = 3019,
1687 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 1.01 (s,
9 H), 3.33 (dd, 1 H, J = 12.0,
8.0 Hz), 4.64 (dd, 1 H, J = 12.3,
7.6 Hz), 4.80 (t, 1 H, J = 7.8
Hz), 7.25-7.38 (m, 5 HAr), 7.51 (t, 1 HAr, J = 7.2 Hz),
7.58 (t,
1 HAr, J = 7.2
Hz), 7.80 (d, 1 HAr, J = 7.2
Hz), 8.16 (d, 1 HAr, J = 7.2
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 28.1,
51.7, 64.7, 75.9, 81.0, 122.8, 125.4, 126.8, 127.7, 128.9, 131.8, 132.7,
144.3, 153.6, 179.9. MS (EI): m/z = 350 [M+].
Anal. Calcd (%) for C21H22N2O3 (350.16):
C, 71.98; H, 6.33; N, 7.99. Found: C, 71.77; H, 6.18; N, 7.76.
Data for Compound
15a
Isolated in 35% yield as an orange solid
(EtOAc-cyclohexane = 2:3; R
f
= 0.17);
mp 171 ˚C; [α]D -212.4
(c 1.45×10-³,
CH2Cl2). IR (KBr): νmax = 3019,
1686 cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 2.02-20.7
(m, 1 H), 2.35-2.56 (m, 3 H), 3.91-4.03 (m, 1
H), 4.30 (s, 2 H), 4.81 (s, 1 H), 5.59 (s, 1 H), 7.12-7.24
(m, 5 HAr), 7.30-7.33 (m, 4 HAr),
7.44-7.48 (t, 1 HAr, J = 6.6
Hz), 7.56 (d, 1 HAr, J = 6.0
Hz), 7.67 (d, 1 HAr, J = 7.2
Hz), 7.75 (d, 1 HAr, J = 7.2
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 29.8,
31.5, 39.3, 51.6, 59.1, 66.6, 123.7, 124.2, 126.0, 126.4, 127.3
(2×), 127.6, 127.8, 128.8, 129.2, 129.6 (2×),
132.0, 132.5, 134.4, 135.0, 140.9, 145.0, 167.5, 175.7. MS (EI): m/z = 394 [M+].
Anal. Calcd (%) for C26H22N2O2 (394.48):
C, 79.16; H, 5.62; N, 7.10. Found: C, 79.06; H, 5.52; N, 7.05.
Data for Compound 15b
Isolated
in 31% yield as an orange solid (EtOAc-cyclohexane = 2:3; R
f
= 0.11);
mp 216 ˚C; [α]D -210.9
(c 0.82×10-³,
CH2Cl2). IR (KBr): νmax = 3019,
1676 cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 1.50-1.57
(m, 1 H), 2.30-2.48 (m, 2 H), 2.50-2.65 (m, 1
H), 3.53 (dd, 1 H, J = 14.1,
3.7 Hz), 4.19 (d, 1 H, J = 8.0
Hz), 4.78 (dd, 1 H, J = 14.1
Hz), 5.54-5.56 (m, 2 H), 6.23-6.29 (m, 2 HAr),
6.56 (t, 2 HAr, J = 7.1
Hz), 6.71 (t, 1 HAr, J = 7.1
Hz), 6.84 (t, 1 HAr, J = 7.4 Hz),
6.98 (d, 1 HAr, J = 7.4
Hz), 7.13 (t, 1 HAr, J = 7.4
Hz), 7.46 (d, 1 HAr, J = 7.4
Hz), 7.55 (t, 1 HAr, J = 7.2
Hz), 7.63 (t, 1 HAr, J = 7.2
Hz), 7.81 (t, 1 HAr, J = 7.2
Hz), 7.95 (d, 1 HAr, J = 7.2
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 29.2,
29.8, 42.1, 50.4, 58.9, 61.8, 123.4, 124.1, 125.0, 125.7 (2×),
126.7, 127.1, 127.8 (2×), 128.6, 129.0, 131.7, 132.1, 132.3,
132.9, 133.9, 141.8, 143.7, 167.9, 176.6; MS (EI): m/z = 394 [M+]. Anal.
Calcd (%) for C26H22N2O2 (394.48):
C, 79.16; H, 5.62; N, 7.10. Found: C, 78.96; H, 5.50; N, 6.93.