Abstract
The search for atom-economic carbon-carbon bond-forming
reactions initiated by low-valent cobalt complexes has led to two
reactions that generate acyclic 1,4-dienes: the 1,4-hydrovinylation
reaction of a terminal alkene with a 1,3-diene and the Alder-ene
reaction of a terminal alkene with an internal alkyne.
The regioselective cobalt-catalysed Diels-Alder reaction
of an alkyne and a 1,3-diene for the synthesis of cyclic 1,4-dienes
led to its application in the synthesis of 1,3-dicarbonyl derivatives
upon ozonolysis. Through applications of the cobalt-catalysed 1,4-hydrovinylation
reaction, the synthesis of 1,3- or 1,4-dicarbonyl derivatives can
be accomplished in a substrate-controlled process. For instance,
2,3-dimethylbuta-1,3-diene leads to acyclic 1,4-dienes via the cobalt-catalysed
1,4-hydrovinylation reaction which can then be converted into 1,3-carbonyls
by ozonolysis. In contrast, the use of 2-(trimethylsiloxy)buta-1,3-diene
generates γ,δ-unsaturated ketones, which can be
converted into 1,4-dicarbonyl derivatives upon ozonolysis. Recently,
studies into the synthesis of different types of polycarbonyl compounds
in which the distance between the carbonyl groups can be altered
have been initiated.
1 Introduction
2 The 1,4-Hydrovinylation Reaction
3 The Alder-ene Reaction
4 Stoking the Fire of the Hydrovinylation Reaction
5 The ‘Second Generation’ of 1,4-Hydrovinylation
Processes
Key words
Alder-ene reactions - alkenes - alkynes - cobalt
catalysis - dienes - hydrovinylations
References
1
Noyori R.
Asymmetric
Catalysis in Organic Synthesis
Wiley;
New
York:
1994.
Key references:
2a
Brunner H.
Reimer A.
Bull. Soc. Chim. Fr.
1997,
134:
307
2b
Lautens M.
Tam W.
Lautens JC.
Edwards LG.
Crudden CM.
Smith AC.
J.
Am. Chem. Soc.
1995,
117:
6863
3a
Hilt G.
du Mesnil F.-X.
Lüers S.
Angew. Chem. Int. Ed.
2001,
40:
387
3b
Hilt G.
du Mesnil F.-X.
Tetrahedron Lett.
2000,
41:
6757
For selected references concerning
1,2-hydrovinylation reactions, see:
4a
Jolly PW.
Wilke G. In Applied Homogeneous
Catalysis with Organometallic Compounds
Vol. 2:
Cornils B.
Herrmann WA.
Wiley-VCH;
Weinheim / Germany:
2002.
p.1164
4b
RajanBabu TV.
Chem. Rev.
2003,
103:
2845
4c
Smith CR.
RajanBabu TV.
Org.
Lett.
2008,
10:
1657
4d
Lassauque N.
Franciò G.
Leitner W.
Adv.
Synth. Catal.
2009,
351:
3133
4e
Grutters MMP.
Müller C.
Vogt D.
J. Am. Chem. Soc.
2006,
128:
7414
4f
Sharma RK.
RajanBabu TV.
J.
Am. Chem. Soc.
2010,
132:
3295
5
Hilt G.
Danz M.
Treutwein J.
Org. Lett.
2009,
11:
3322
6a
Hilt G.
Treutwein J.
Angew.
Chem. Int. Ed.
2007,
46:
8500
6b
Hilt G.
Paul A.
Treutwein J.
Org.
Lett.
2010,
12:
1536
Compare ref. 5 and
7a
Hilt G.
Erver F.
Harms K.
Org. Lett.
2011,
13:
304
with
7b
Trost BM.
Toste FD.
Pinkerton AB.
Chem. Rev.
2001,
101:
2067
7c
Trost BM.
Toste FD.
Tetrahedron
Lett.
1999,
40:
7739
7d
Trost BM.
Martos-Redruejo A.
Org.
Lett.
2009,
11:
1071
8
Hilt G.
Janikowski J.
Angew. Chem. Int. Ed.
2008,
47:
5243
9a
Hilt G.
Janikowski J.
Hess W.
Angew. Chem. Int. Ed.
2006,
45:
5204
9b
Hilt G.
Janikowski J.
Org. Lett.
2009,
11:
773
10a
Silva MA.
Pellegrinet SC.
Goodman JM.
J.
Org. Chem.
2003,
68:
4095
10b
Silva MA.
Pellegrinet SC.
Goodman JM.
ARKIVOC
2003,
(X):
556
10c
Pellegrinet SC.
Silva MA.
Goodman JM.
J. Am. Chem. Soc.
2001,
123:
8832
10d
Lee Y.-K.
Singleton DA.
J. Org. Chem.
1997,
62:
2255
10e
Singleton DA.
Kim K.
Martinez JP.
Tetrahedron Lett.
1993,
34:
3071
11
Mörschel P.
Janikowski J.
Hilt G.
Frenking G.
J. Am. Chem. Soc.
2008,
130:
8952
12a
Hilt G.
Arndt M.
Weske DF.
Synthesis
2010,
1321
12b
Kersten L.
Roesner S.
Hilt G.
Org.
Lett.
2010,
12:
4920
12c
Arndt M.
Reinhold A.
Hilt G.
J.
Org. Chem.
2010,
75:
5203
13 Hilt, G.; Kuttner, J.; Erver, F. unpublished
results.
14
Aho JE.
Salomäki E.
Rissanen K.
Pihko PM.
Org. Lett.
2008,
10:
4179