Subscribe to RSS
DOI: 10.1055/s-0030-1260553
Nano Copper Oxide Catalyzed Synthesis of Symmetrical Diaryl Selenides via Cascade Reaction of KSeCN with Aryl Halides
Publication History
Publication Date:
05 May 2011 (online)
Abstract
An unprecedented transfer of selenium ion from potassium selenocyanate was observed in C-Se cross-coupling reaction catalyzed by copper oxide nanoparticles under ligand-free conditions. Utilizing this protocol wide range of symmetrical diaryl selenides were obtained in excellent yields. Nano-CuO is recyclable up to four cycles without loss of catalytic activity.
Key words
aryl halides - potassium selenocyanate - cross-coupling - nano copper oxide - ligand-free conditions - recyclable
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Sarma BK.Mugesh G. Org. Biomol. Chem. 2008, 6: 965 -
1b
Nogueira CW.Zeni G.Rocha JB. Chem. Rev. 2004, 104: 6255 -
1c
Mugesh G.du Mont WW.Sies H. Chem. Rev. 2001, 101: 2125 -
1d
Mugesh G.Singh HB. Chem. Soc. Rev. 2000, 29: 347 -
2a
Krief A.Hevesi L. Organoselenium Chemistry I Springer; Berlin: 1988. -
2b
Comasseto JV.Ling LW.Petragnani N.Stefani HA. Synthesis 1997, 373 -
2c
Organoselenium
Chemistry: A Practical Approach
Back TG. Oxford University Press; Oxford: 1999. -
2d
Procter DJ. J. Chem. Soc., Perkin Trans. 1 2000, 835 -
3a
Braga AL.Ludtke DS.Vargas F.Braga RC. Synlett 2006, 1453 -
3b
Braga AL.Vargas F.Sehnem JA.Braga RC. J. Org. Chem. 2005, 70: 9021 -
3c
Braga AL.Paixao MW.Ludtke DS.Silveira CC.Rodrigues OED. Org. Lett. 2003, 5: 3635 -
3d
Braga AL.Silva SJN.Ludtke DS.Drekener RL.Silveira CC.Rocha JBT.Wessjohann LA. Tetrahedron Lett. 2002, 43: 7329 -
3e
Braga AL.Paixao MW.Marin G. Synlett 2005, 1975 -
3f
Braga AL.Ludtke DS.Sehnem JA.Alberto EE. Tetrahedron 2005, 61: 11664 - 4
Engman L.Cotgreave I.Angulo M.Taylor CW.Paine-Murrieta GD.Powis G. Anticancer Res. 1997, 17: 4599 -
5a
Back TG.Moussa Z. J. Am. Chem. Soc. 2003, 125: 13455 -
5b
Nogueira CW.Zeni G.Rocha JBT. Chem. Rev. 2004, 104: 6255 -
5c
Anderson C.-M.Allberg A.Hogberg T. Adv. Drug. Res. 1996, 28: 65 -
5d
Clark LC.Combs GF.Turnbull BW.Slate EH.Chalker DK.Chow J.Davis LS.Glover RA.Graham GF.Gross EG.Krongrad A.Lesher JL.Park K.Sanders BB.Smith CL.Taylor R. J. Am. Med. Assoc. 1996, 276: 1957 -
5e
Woods JA.Hadfield JA.McGown AT.Fox BW. Org. Biomol. Chem. 1993, 1: 333 -
6a
Suzuki H.Abe H.Osuka A. Chem. Lett. 1981, 151 -
6b
Osuka A.Ohmasa N.Suzuki H. Synth. Commun. 1982, 857 -
6c
Andersson CM.Hallberg A.Linden M.Brattsand R.Moldeus P.Cotgreave I. Free Radical Biol. Med. 1994, 16: 17 -
6d
Andersson CM.Hallberg A.Hugberg T. Adv. Drug Res. 1996, 28: 65 -
7a
Nishiyama Y.Tokunaga K.Sonoda N. Org. Lett. 1999, 1: 1725 -
7b
Beletskaya IP.Sigeev AS.Peregudov AS.Petrovskii PV. J. Organomet. Chem. 2000, 96: 605 - 8
Cristau HJ.Chabaud B.Labaudiniere R.Christol H. Organometallics 1985, 4: 657 -
9a
Bhadra S.Saha A.Ranu BC. J. Org. Chem. 2010, 75: 4864 -
9b
Singh D.Alberto EE.Rodrigues OED.Braga AL. Green Chem. 2009, 11: 1521 -
9c
Alves D.Santos CG.Paixao MW.Soares LC.de Souza D.Rodrigues OED.Braga AL. Tetrahedron Lett. 2009, 50: 6635 -
9d
Saha A.Saha D.Ranu BC. Org. Biomol. Chem. 2009, 7: 1652 -
9e
Taniguchi N.Onami T. J. Org. Chem. 2004, 69: 915 -
9f
Kumar S.Engman L. J. Org. Chem. 2006, 71: 5400 -
9g
Taniguchi N. J. Org. Chem. 2007, 72: 1241 -
9h
Gujadhur RK.Venkataraman D. Tetrahedron Lett. 2003, 44: 81 -
9i
Beletskaya IP.Sigeev AS.Peregudov AS.Petrovskii PV. Tetrahedron Lett. 2003, 44: 7039 -
9j
Wang L.Wang M.Huang F. Synlett 2005, 2007 -
9k
Chang D.Bao W. Synlett 2006, 1786 -
9l
Taniguchi N.Onami T. Synlett 2003, 829 -
9m
Taniguchi N. Synlett 2005, 1687 - 10
Wang M.Ren K.Wang L. Adv. Synth. Catal. 2009, 351: 1586 - 11
Ren K.Wang M.Wang L. Org. Biomol. Chem. 2009, 7: 4858 - 12
Murthy SN.Madhav B.Reddy VP.Nageswar YVD. Eur. J. Org. Chem. 2009, 5902 - 13
Reddy VP.Kumar AV.Rao KR. J. Org. Chem. 2010, 75: 8720 -
14a
Swapna K.Murthy SN.Nageswar YVD. Eur. J. Org. Chem. 2010, 6678 -
14b
Reddy VP.Swapna K.Kumar AV.Rao KR. J. Org. Chem. 2009, 74: 3189 -
14c
Swapna K.Kumar AV.Reddy VP.Rao KR.
J. Org. Chem. 2009, 74: 7514 -
14d
Reddy VP.Kumar AV.Swapna K.Rao KR. Org. Lett. 2009, 11: 951 -
14e
Reddy VP.Kumar AV.Swapna K.Rao KR. Org. Lett. 2009, 11: 1697 -
14f
Reddy VP.Kumar AV.Swapna K.Rao KR. Synlett 2009, 2783 -
14g
Reddy VP.Kumar AV.Rao KR. Chem. Lett. 2010, 39: 212 -
14h
Reddy VP.Kumar AV.Rao KR. Tetrahedron Lett. 2010, 51: 3181 -
15a
Pacchioni G. Surf. Rev. Lett. 2000, 7: 277 -
15b
Knight WD.Clemenger K.de Heer WA.Saunders WAM.Chou Y.Cohen ML. Phys. Rev. Lett. 1984, 52: 2141 -
15c
Kaldor A.Cox D.Zakin MR. Adv. Chem. Phys. 1988, 70: 211 -
16a
Yavuz S.Diºli A.Yildirir Y.Türker L. Molecules 2005, 10: 1000 -
16b
Krief A.Delmotte C.Dumont W. Tetrahedron 1997, 53: 12147
References and Notes
General Procedure
for the Synthesis of Diaryl Selenides
To a stirred
solution of aryl halides (2.0 mmol) and potassium selenocyanate
(1.2 equiv) in dry DMSO (2.0 mL) at r.t. was added nano-CuO (5.0
mol%) followed by KOH (2.0 equiv) and heated at 110 ˚C
for 15 h. The progress of the reaction was monitored by TLC. After
the reaction was complete, the reaction mixture was allowed to cool,
and a 1:1 mixture of EtOAc-H2O (20 mL) was added.
The combined organic extracts were washed with brine and H2O and
dried with anhyd Na2SO4. The solvent and volatiles were
completely removed under vacuum to give the crude product, which
was purified by column chromatography on silica gel (PE-EtOAc)
to afford the corresponding coupling product in excellent yields.
Recycling of the Catalyst
After
the reaction was complete, the reaction mixture was allowed to cool,
a 1:1 mixture of EtOAc- H2O (2.0 mL) was added,
and CuO was removed by centrifugation. After each cycle, the catalyst
was recovered by simple centrifugation, washing with deionized H2O
and EtOAc and then drying in vacuo. The recovered nano-CuO was used
directly in the next cycle.
Dinaphthalen-1-ylselane
(Table 2, Entry 11)
Yellow liquid. IR (neat): ν = 3091,
2928, 1588, 1390, 1077, 968, 848 cm-¹. ¹H
NMR (200 MHz, CDCl3, TMS): δ = 8.05-8.02
(m, 4 H), 7.79-7.65 (m, 4 H), 7.55-7.40 (m, 4
H), 7.15 (t, 2 H, J = 7.93Hz). ¹³C
NMR (50 MHz, CDCl3, TMS): δ = 137.2,
133.9, 131.9, 128.8, 128.3, 127.5, 126.6, 125.6. ESI-MS: m/z = 335 [M + 1].
Anal. Calcd for C20H14Se(334): C, 72.07; H,
4.23. Found: C, 72.01; H, 4.18.
Bis[4-(benzyloxy)phenyl]selane
(Table 2, Entry 13)
Colorless oil. IR (neat): ν = 3099,
2923, 1598, 1397, 1081, 961, 842 cm-¹. ¹H
NMR (200 MHz, CDCl3, TMS): δ = 7.51 (d,
4 H, J = 9.16
Hz), 7.39-7.25 (m, 10 H), 6.70 (d, 4H, J = 9.16
Hz), 5.02 (s, 4 H). ¹³C NMR (50 MHz,
CDCl3, TMS): δ = 158.63, 138.35, 136.35,
128.52, 128.11, 127.30, 117.53, 69.87. ESI-MS: m/z = 447 [M + 1].
Anal. Calcd for C26H22O2Se(446):
C, 70.11; H, 4.98. Found: C, 70.04; H, 4.91.
Dipyridin-3-ylselane (Table 2, Entry 18)
¹H
NMR (200 MHz, CDCl3): δ = 8.69 (s,
2 H), 8.58-8.52 (m, 2 H), 7.73 (d, 2 H, J = 7.93
Hz), 7.25-7.19 (m, 2 H). ¹³C NMR
(50 MHz, CDCl3, TMS): δ = 153.3, 148.9,
140.6, 124.4. ESI-MS: m/z = 237 [M + 1].
Anal. Calcd for C10H8N2Se(236):
C, 51.08; H, 3.43; N, 11.91. Found: C, 51.14; H, 3.46; N, 11.95.
Dipyrimidin-5-ylselane (Table 2, Entry
20)
Colorless oil. IR (neat): ν = 3092,
2960, 1597, 1444, 1068, 865, 738 cm-¹. ¹H
NMR (200 MHz, CDCl3, TMS): δ = 7.51 (s,
2 H), 7.25 (s, 4 H). ¹³C NMR (50 MHz,
CDCl3, TMS):
δ = 132.9, 129.0,
127.5. ESI-MS: m/z = 239 [M + 1].
Anal. Calcd for C8H6N4Se(238):
C, 40.52; H, 2.55; N, 23.63. Found: C, 40.46; H, 2.45; N, 23.57.