Synlett 2011(17): 2585-2589  
DOI: 10.1055/s-0030-1260324
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Multisubstituted Cyclopentadienes from Cyclopentenones Prepared via Catalytic Double Aldol Condensation and Nazarov Reaction Sequence

Yuta Nishina, Tomohiro Tatsuzaki, Ayano Tsubakihara, Yoichiro Kuninobu*, Kazuhiko Takai*
Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
Fax: +81(86)2518094; e-Mail: kuninobu@cc.okayama-u.ac.jp; e-Mail: ktakai@cc.okayama-u.ac.jp;
Further Information

Publication History

Received 20 July 2011
Publication Date:
22 September 2011 (online)

Abstract

The rhenium-catalyzed synthesis of cyclopentenone derivatives via double aldol condensation and successive Nazarov reaction is described. The cyclopentenones were converted to the corresponding cyclopentadienes using organolithium reagents. Cyclopentadienes with four different substituents could be synthesized by stepwise double aldol condensation using a ketone and two types of aldehydes, followed by treatment with an organolithium reagent.

    References and Notes

  • 2a Comprehensive Organometallic Chemistry II   Vol. 3:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2b Comprehensive Organometallic Chemistry II   Vol. 4:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2c Comprehensive Organometallic Chemistry II   Vol. 5:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2d Comprehensive Organometallic Chemistry II   Vol. 6:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2e Comprehensive Organometallic Chemistry II   Vol. 7:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2f Comprehensive Organometallic Chemistry II   Vol. 8:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2g Comprehensive Organometallic Chemistry II   Vol. 9:  Abel EW. Stone FGA. Wilkinson G. Elsevier; Oxford (U.K.): 1995. 
  • 2h McKnight AL. Waymouth RM. Chem. Rev.  1998,  98:  2587 
  • 2i Arndt S. Okuda J. Chem. Rev.  2002,  102:  1953 
  • 2j Deck PA. Coord. Chem. Rev.  2006,  250:  1032 
  • There are several examples of applications for electroluminescence devices. See:
  • 3a Adachi C. Tsutsui T. Saito S. Appl. Phys. Lett.  1990,  56:  799 
  • 3b Ohmori Y. Tada N. Fujii A. Ueta H. Sawatani T. Yoshino K. Thin Solid Films  1998,  331:  89 
  • 3c Sugiyama K. Yoshimura D. Miyamae T. Miyazaki T. Ishii H. Ouchi Y. Seki K. J. Appl. Phys.  1998,  83:  4928 
  • 3d Zhao YS. Fu H. Hu F. Peng AD. Yao J. Adv. Mater.  2007,  19:  3554 
  • 4a Chambers JW. Baskar AJ. Bott SG. Atwood JL. Rausch MD. Organometallics  1986,  5:  1635 
  • 4b Burk MJ. Calabrese JC. Davidson F. Harlow RL. Roe DC. J. Am. Chem. Soc.  1991,  113:  2209 
  • 4c Martín-Matute B. Edin M. Bogár K. Kaynak FB. Bäckvall J.-E. J. Am. Chem. Soc.  2005,  127:  8817 
  • 4d Mavrynsky D. Päiviö M. Lundell K. Sillanpää R. Kanerva LT. Leino R. Eur. J. Org. Chem.  2009,  1317 
  • 5 Kohl FX. Jutzi P. J. Organomet. Chem.  1983,  243:  119 
  • 6 There has been a report on zirconium-catalyzed synthesis of cyclopentenones from ketones and aldehydes and its application to the preparation of cyclopentadienes. See: Yuki T. Hashimoto M. Nishiyama Y. Ishii Y. J. Org. Chem.  1993,  58:  4497 
  • For reviews of Nazarov reactions, see:
  • 7a Santelli-Rouvier C. Santelli M. Synthesis  1983,  429 
  • 7b Pellissier H. Tetrahedron  2005,  61:  6479 
  • 7c

    There have been many reports on reactions catalyzed by a rhenium complex as a Lewis acid; however, examples of rhenium-catalyzed Nazarov reactions are still rare.

  • 8 Rhenium carbonyl complexes exhibit Lewis acidity. See: Kuninobu Y. Takai K. Chem. Rev.  2011,  111:  1938 
  • 10 There has been a report on titanium-catalyzed synthesis of cyclopentenones from ketones and aldehydes. See: Tao X. Liu R. Meng Q. Zhao Y. Zhou Y. Huang J. J. Mol. Cat. A: Chem.  2005,  225:  239 
  • 11 Rhenium carbonyl complexes function as mild Lewis acids, which do not decompose α,β-unsaturated carbonyl compounds. The reactivities are maintained even in the presence of water. See: Kuninobu Y. Ueda H. Takai K. Chem. Lett.  2008,  37:  878 
  • 13 Arnold A. Markert M. Mahrwald R. Synthesis  2006,  1099 
  • 14a Walz I. Togni A. Chem. Commun.  2008,  4315 
  • 14b Wu YK. West FG. J. Org. Chem.  2010,  75:  5410 
  • 14c Yaji K. Shindo M. Tetrahedron Lett.  2010,  51:  5469 
  • 17 The magnesium ate complex can undergo selective addition to the carbonyl group. See: Hatano M. Matsumura T. Ishihara K. Org. Lett.  2005,  7:  573 
  • Monoselective aldol reaction has been limited to a few examples. See:
  • 19a Iranpoor N. Kazemi F. Tetrahedron  1998,  54:  9475 
  • 19b Cao YQ. Dai Z. Zhang R. Chen BH. Synth. Commun.  2005,  35:  1045 
  • 21a Koschinsky R. Köhli TP. Mayr H. Tetrahedron Lett.  1988,  29:  5641 
  • 21b Batz C. Jutzi P. Synthesis  1996,  1296 
  • 21c Lee JH. Toste FD. Angew. Chem. Int. Ed.  2007,  46:  912 
1

Present address: Research Core for Interdisciplinary Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan.

9

For investigation of several catalysts: Sc(OTf)3 (5.0 mol%, 150 ˚C, 24 h), 12%; TiCl4(thf)2 (10 mol%, 120 ˚C, 16 h), 80%; ZrOCl2˙8H2O (10 mol%, 150 ˚C, 12 h), 63%; AuCl3 (5.0 mol%, 150 ˚C, 24 h), 4%. No reaction (5.0 mol%, 150 ˚C, 24 h): InCl3, In(OTf)3, and Cu(OTf)2. These results were obtained within the scope of this work.

12

Self-aldol condensation of acetaldehyde (2b) also proceeded as a side reaction.

15

When the reaction was quenched with aq HCl, the yield of 5a decreased. See: ref 5.

16

The yield of 5a was low because deprotonation of 3b with 1a occurred predominantly. When the reaction was quenched with D2O, deuterium was incorporated at the α-position of the carbonyl group of 3b.

18

Chloroform was used as a proton source. When a catalytic amount of p-toluenesulfonic acid was used in the dehydration, the yield of cyclopentadiene 5b decreased.

20

The regioisomers of 5i could not be separated by column chromatography on silica gel or GPC. The ratio between five regioisomers of 5i was determined by ¹H NMR.

22

General Procedure for the Synthesis of Cyclopentenones 3: A mixture of ketone 1 (0.250 mmol), aldehyde 2 (0.500 mmol), Re2(CO)10 (8.2 mg, 0.0125 mmol), and toluene (0.1 mL) was stirred at 150 ˚C for 24 h in a sealed tube. Then, the solvent was removed in vacuo and the product was isolated by column chromatography on silica gel (hexane-EtOAc = 20:1) to give cyclopentenone 3.

23

2,5-Dimethyl-3,4-diphenyl-2-cyclopentene-1-one (3a): ¹H NMR (400 MHz, CDCl3): δ = 1.25 (d, J = 7.2 Hz, 3 H), 1.93 (d, J = 1.6 Hz, 3 H), 2.31 (qd, J = 7.2, 2.8 Hz, 1 H), 3.89 (s, 1 H), 6.97-7.23 (m, 10 H). ¹³C NMR (100 MHz, CDCl3):
δ = 10.1, 15.2, 51.2, 56.2, 126.5, 127.4, 128.2, 128.6, 128.8, 135.0, 136.6, 136.8, 141.9, 166.9, 210.8.

24

General Procedure for the Synthesis of Cyclopentadienes 5: To a mixture of cyclopentenone 3 (0.25 mmol) and THF (5.0 mL), an Et2O solution of organolithium reagent 4 (0.275 mmol, 1.1 equiv) was added dropwise at -78 ˚C. Then the reaction mixture was stirred at -78 ˚C for 3 h. The reaction was quenched with aq NH4Cl (3.0 mL), and the mixture was extracted with EtOAc. The organic layer was dried with MgSO4, filtered, and concentrated in vacuo. CH2Cl2 (1.0 mL) and TsOH (5.2 mg, 0.0125 mmol, 0.050 equiv) were added to the mixture, and the mixture was stirred at 25 ˚C for 1 h. Then, the solvent was removed in vacuo and the product was isolated by column chromatography on silica gel (hexane-EtOAc = 50:1) to give cyclopentadiene 5.

25

1,2,3,4,5-Pentaphenylcyclopentadiene (5a): ¹H NMR (400 MHz, CDCl3): δ = 5.08 (s, 1 H), 6.94-6.98 (m, 4 H), 7.00-7.03 (m, 8 H), 7.08-7.22 (m, 13 H). ¹³C NMR (100 MHz, CDCl3): δ = 62.7, 126.3, 126.5, 126.7, 127.7, 127.8, 128.4, 128.5, 129.0, 130.1, 135.8, 136.1, 138.1, 144.0, 146.5.