Synlett 2011(16): 2339-2342  
DOI: 10.1055/s-0030-1260310
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Biomimetic Synthesis of 2,5-Bis(indol-3-ylmethyl)pyrazine via Intermolecular Amino Aldehyde Cyclization

Sandhya Badrinarayanan, Jonathan Sperry*
School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
Fax: +64(9)3737422; e-Mail: j.sperry@auckland.ac.nz;
Weitere Informationen

Publikationsverlauf

Received 14 June 2011
Publikationsdatum:
13. September 2011 (online)

Abstract

The biomimetic synthesis of the natural product 2,5-bis(3-indolylmethyl)pyrazine (11) is described. The 2,5-disubstituted pyrazine was constructed by the novel biomimetic cyclization of a tryptophan-derived amino aldehyde. The synthesis validates a recently proposed, alternative biosynthetic pathway into the construction of 2,5-disubstituted pyrazine natural products.

    References and Notes

  • 1a Maga JA. Sizer CE. J. Agric. Food Chem.  1973,  21:  22 
  • 1b Arnoldi A. Arnoldi C. Baldi O. Griffini A. J. Agric. Food Chem.  1988,  36:  988 
  • 1c Sumoto K. Irie M. Mibu N. Miyano S. Nakashima Y. Watanabe K. Yamaguchi T. Chem. Pharm. Bull.  1991,  39:  792 
  • 1d Eitelman SJ. Feather MS. Carbohydr. Res.  1979,  77:  205 
  • 1e Candiano G. Ghiggeri GM. Gusmano R. Zetta L. Benfenati E. Icardi G. Carbohydr. Res.  1988,  184:  67 
  • 1f Kerns RJ. Tpoida T. Linhardt RJ. J. Carbohyr. Chem.  1996,  15:  581 
  • 1g Rohovec J. Kotek J. Peters JA. Maschmeyer T. Eur. J. Org. Chem.  2001,  3299 
  • For recent examples, see:
  • 2a Mondal R. Ko S. Bao Z.
    J. Mater. Chem.  2010,  20:  10568 
  • 2b Saito R. Matsumura Y. Suzuki S. Okazaki N. Tetrahedron  2010,  66:  8273 
  • 2c Wriedt M. Jeß I. Näther C. Eur. J. Inorg. Chem.  2009,  363 
  • 2d Liu H.-Y. Wu H. Ma J.-F. Yang J. Liu Y.-Y. Dalton Trans.  2009,  38:  7957 
  • 2e Goher MAS. Bitschnau B. Sodin B. Gspan C. Mautner FA. J. Mol. Struct.  2008,  886:  32 
  • 2f Chang S.-Y. Kavitha J. Li S.-W. Hsu C.-S. Chi Y. Yeh Y.-S. Chou P.-T. Lee G.-H. Carty AJ. Tao Y.-T. Chien C.-H. Inorg. Chem.  2006,  45:  137 
  • 2g Chang CH. Yun MH. Choi WJ. Synth. Met.  2004,  145:  1 
  • For selected examples, see:
  • 3a Bobek M. Bloch A. J. Med. Chem.  1972,  15:  164 
  • 3b Street LJ. Baker R. Book T. Reeve AJ. Saunders J. Willson T. Marwood RS. Patel S. Freedman SB. J. Med. Chem.  1992,  35:  295 
  • 3c Seitz LE. Suling WJ. Reynolds RC. J. Med. Chem.  2002,  45:  5604 
  • 3d Niculescu-Duvaz I. Roman E. Whittaker SR. Friedlos F. Kirk R. Scanlon IJ. Davies LC. Niculescu-Duvaz D. Marais R. Springer CJ. J. Med. Chem.  2008,  51:  3261 
  • 3e Cheng X.-C. Liu X.-Y. Xu W.-F. Guo X.-L. Zhang N. Song Y.-N. Bioorg. Med. Chem.  2009,  17:  3018 
  • 3f Zitko J. Dolezai M. Svobodova M. Vejsova M. Kucera R. Jilek P. Bioorg. Med. Chem.  2011,  19:  1471 
  • 3g Dubuisson MLN. Rees J.-F. Brynaert-Merchand J. Mini-Rev. Med. Chem.  2004,  4:  159 
  • 4a Moser BR. J. Nat. Prod.  2008,  71:  487 
  • 4b Lee S. LaCour TG. Fuchs P. Chem. Rev.  2009,  109:  2275 
  • 5 Chill L. Aknin M. Kashman Y. Org. Lett.  2003,  14:  2433 
  • 6a Durán R. Zubía E. Ortega MJ. Naranjo S. Salvá J. Tetrahedron  1999,  55:  13225 
  • 6b Saito R. Tokita M. Uda K. Ishikawa C. Satoh M. Tetrahedron  2009,  65:  3019 
  • 7a Dunn G. Newbold GT. Spring FS. J. Chem. Soc.  1949,  2586 
  • 7b Yokotsuka T. Sasaki M. Kikuchi K. Asao Y. Nobuhara A. Nippon Nogeikagaku Kaishi  1967,  41:  32 
  • 7c Sasaki M. Asao Y. Yokotsuka T. Nippon Nogeikagaku Kaishi  1968,  42:  288 
  • 7d Tatsuka K. Tsuchiya S. J. Antibiot.  1972,  25:  674 
  • 7e Tatsuka K. Fujimoto K. Yamashita M. Tsuchiya T. Umeyama S. Umeyama H. J. Antibiot.  1973,  26:  606 
  • 8 Yong W. Gloer JB. Scott JA. Malloch D. J. Nat. Prod.  1995,  58:  93 
  • 9a Bousquet JF. Belhomme de Franqueville H. Kollmann A. Fritz R. Can. J. Bot.  1980,  58:  2575 
  • 9b Devys M. Barbier M. Kollmann A. Bousquet J.-F. Tetrahedron Lett.  1982,  23:  5409 
  • 10 Huang S.-X. Powell E. Rajski SR. Zhao L.-X. Jiang C.-L. Duan Y. Xu W. Shen B. Org. Lett.  2010,  12:  3525 
  • 11 Shaaban M. Maskey RP. Wagner-Döbler I. Laatsch H. J. Nat. Prod.  2002,  65:  1660 
  • 12 Beck HC. Hansen AM. Lauritsen FR. FEMS Microbiol. Lett.  2003,  220:  67 
  • 13 Mahboobi S. Sellmer A. Burgemeister T. Lyssenko A. Schollmeyer D. Monatsh. Chem.  2004,  135:  333 
  • 14a Fruit C. Turck A. Plé N. Mojovic L. Quéguiner G. Tetrahedron  2001,  57:  9429 
  • 14b Buron F. Plé N. Turck A. Queguiner G. J. Org. Chem.  2005,  70:  2616 
  • 15a Charette AB. Focken T. Org. Lett.  2006,  8:  2985 
  • 15b Montserrat Martínez M. Sarandeses LA. Pérez Sestelo J. Tetrahedron Lett.  2007,  48:  8536 
  • 15c Peña-López M. Montserrat Martínez M. Sarandeses LA. Pérez Sestelo J. Org. Lett.  2010,  12:  852 
  • For biomimetic synthetic studies towards tri- and tetrasubstituted pyrazines, see:
  • 16a Okada Y. Taguchi H. Yokoi T. Tetrahedron Lett.  1996,  37:  2249 
  • 16b Okada Y. Taguchi H. Yokoi T. Chem. Pharm. Bull.  1996,  44:  2259 
  • 16c Buron F. Turck A. Plé N. Bischoff L. Marsais F. Tetrahedron Lett.  2007,  48:  4327 
  • Several syntheses of pyrazines from diketopiperazines also exist:
  • 16d Ohta A. Kojima A. Saito T. Kobayashi K. Saito H. Wakabayashi K. Honma S. Sakuma C. Aoyagi Y. Heterocycles  1991,  32:  923 
  • 16e Ohta A. Kojima A. Aoyagi Y. Heterocycles  1990,  31:  1665 
  • 16f Candelon N. Shinkaruk S. Bennetau B. Bennetau-Pelissero B. Dumartin M.-L. Deguil M. Babin P. Tetrahedron  2010,  66:  2463 
  • 16g Chaignaud M. Gillaizeau I. Ouhamou N. Coudert G. Tetrahedron  2008,  64:  8059 
  • 17 Nawrath T. Dickschat JS. Kunze B. Schulz S. Chem. Biodiv.  2010,  7:  2129 
  • 18 Tryptophan diketopiperazine is a known natural product called fellutanine A: Kozlovsky AG. Vinokurova NG. Adanin VM. Burkhardt H.-MD. Gräfe U. J. Nat. Prod.  2000,  63:  698 
  • 20a Rodriguez M. Lignon M.-L. Galas M.-C. Fulcrand P. Mendre C. Aumelas A. Laur J. Martinez J. J. Med. Chem.  1987,  30:  1366 
  • 20b Shao YM. Yang W.-B. Peng H.-P. Hsu M.-F. Tsai K.-C. Kuo T.-H. Wang AH.-J. Liang P.-H. Lin C.-H. Yang A.-S. Wong C.-H. ChemBioChem  2007,  8:  1654 
  • Aldehyde 14 has been employed as an intermediate in alkaloid syntheses, but has not been characterized due to its poor stability. See:
  • 21a Dyke H. Steel PG. Thomas EJ. J. Chem. Soc., Perkin Trans. 1  1989,  525 
  • 21b Herranz R. Vinuesa S. Pérez C. García-López MT. De Ceballos ML. del Rio J. J. Chem. Soc., Perkin Trans. 1  1991,  2749 
  • 21c

    In our hands, 14 was stable at 0 ˚C under argon for 2 weeks.

19

We employed the Cbz-derivative 14 as the Cbz protecting group can be removed under mild conditions, whereas it was found the acid or base needed to remove either the tert-butyloxycarbonyl (Boc) or fluorenylmethyloxycarbonyl (Fmoc) protecting groups degraded the unmasked amino aldehyde 13. Full details will be reported in due course.

22

(S)-Benzyl 1-(indol-3-yl)-3-oxopropan-2-ylcarbamate (14):²¹ To a stirred solution of Weinreb amide 15 (416 mg, 1.1 mmol) in Et2O (60 mL) was added LiAlH4 (209 mg, 5.5 mmol) at 0 ˚C and the reaction mixture was stirred for 2 h at this temperature. The reaction mixture was quenched with H2O (10 mL), filtered through Celite® and the cake was washed with H2O (40 mL) and then with Et2O (20 mL). The filtrate was extracted with Et2O (3 × 30 mL) and the combined organic layers were washed with HCl acid (1 M, 3 × 30 mL), sat. NaHCO3 solution (3 × 30 mL), brine (30 mL), dried (MgSO4), filtered and concentrated in vacuo. Purification by flash chromatography using EtOAc-hexanes (1:1, R f 0.5) as eluent gave the title compound (320 mg, 0.99 mmol, 90%) as a yellow oil; [α]D ²¹ +30.1 (c = 1.0, CH2Cl2). IR (neat): 3347, 2924, 1704, 1456, 1513, 1373, 1341, 1244, 1045, 845, 744, 698 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.91 (m, 1 H, CHβ H βCHα), 3.21 (m, 1 H, CH βHβCHα), 4.25 (s, 1 H, CHα), 5.03 (m, 2 H, CH 2Ph), 6.96 (t, J = 6.8 Hz, 1 H, ArH), 7.08 (m, 1 H, ArH), 7.16 (s, 1 H, ArH), 7.33 (m, 6 H, ArH), 7.54 (d, J = 8.0 Hz, 1 H, ArH), 7.73 (d, J = 7.6 Hz, 1 H, NH), 9.59 (s, 1 H, CHO), 10.86 (s, 1 H, NH). ¹³C NMR (100 MHz, DMSO-d 6): δ = 23.7 (CH2), 60.4 (CH), 65.5 (CH2), 109.5 (C), 111.3 (CH), 118.1 (CH), 118.3 (CH), 120.9 (CH), 123.7 (CH), 127.6 (CH), 127.7 (2 × CH), 128.2 (CH), 128.3 (2 × CH), 136.1 (C), 136.8 (C), 156.1 (CONH), 201.2 (CHO). MS: m/z (ESI+, %) = 323 (30) [M + H]+, 305 (65), 261 (30), 130 (10), 91 (3). HRMS: m/z [M + H]+ calcd for C19H18N2O3 + H: 323.1380; found: 323.1383.

23

2,5-Bis(indol-3-ylmethyl)pyrazine (11):¹¹,²4 To a solution of aldehyde 14 (85 mg, 0.26 mmol) in MeOH-CH2Cl2-AcOH (2:2:1, 5 mL) was added Pearlman’s catalyst [Pd(OH)2, 20% on carbon, ca.10 mg] and the reaction mixture was stirred under an atmosphere of hydrogen for 2 h. The hydrogen balloon was removed and the reaction mixture was stirred for a further 15 h while open to the air, filtered through Celite® and the filtrate was concentrated in vacuo. Purification by flash chromatography using EtOAc-hexanes (1:1, R f 0.46) as eluent gave the title compound (32 mg, 0.095 mmol, 73%) as a colorless oil. IR (neat): 3223, 2955, 2912, 2850, 1659, 1493, 1458, 1375, 1343, 1259, 1095, 1044, 970, 922, 797, 732, 589 cm. For ¹H NMR and ¹³C NMR data see, Table  [¹] . MS: m/z (ESI+, %) = 339 (100)
[M + H]+, 282 (20), 242 (15), 157 (2). HRMS: m/z [M + H]+ calcd for C22H18N4 + H: 339.1604; found: 339.1593.

24

See Supplementary Information for ¹H NMR and ¹³C NMR spectra of synthetic 11.