Subscribe to RSS
DOI: 10.1055/s-0030-1260250
Synthesis of Mono- and Bis-N-Heterocyclic Carbene Copper(I) Complexes via Decarboxylative Generation of Carbenes
Publication History
Publication Date:
05 October 2011 (online)
Abstract
Zwitterionic carboxylates can be thermally decarboxylated in the presence of copper salts to form NHC-copper complexes. The selective formation of either mono- or bis-NHC complexes is possible through simple control of the molar equivalents of the copper salt. A variety of different NHC ligands with either saturated or unsaturated backbones or bearing N-aryl or N-alkyl substituents can be complexed to copper.
Key words
oxidative coupling - N-heterocyclic carbenes - copper - catalysis - decarboxylation
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Kaur H.Zinn FK.Stevens ED.Nolan SP. Organometallics 2004, 23: 1157 -
1b
Díez-González S.Kaur H.Zinn FK.Stevens ED.Nolan SP. J. Org. Chem. 2005, 70: 4784 -
1c
Díez-González S.Scott NM.Nolan SP. Organometallics 2006, 25: 2355 -
1d
Díez-González S.Stevens ED.Scott NM.Petersen JL.Nolan SP. Chem. Eur. J. 2008, 14: 158 - 2
Welle A.Díez-González S.Tinant B.Nolan SP.Riant O. Org. Lett. 2006, 8: 6059 -
3a
Delp SA.Munro-Leighton C.Goj LA.Ramírez MA.Gunnoe TB.Petersen JL.Boyle PD. Inorg. Chem. 2007, 46: 2365 -
3b
Munro-Leighton C.Blue ED.Gunnoe TB. J. Am. Chem. Soc. 2006, 128: 1446 -
3c
Munro-Leighton C.Delp SA.Blue ED.Gunnoe TB. Organometallics 2007, 26: 1483 -
4a
Trost BM.Dong G. J. Am. Chem. Soc. 2006, 128: 6054 -
4b
Liu R.Herron SR.Fleming SA. J. Org. Chem. 2007, 72: 5587 - 5
Fructos MR.Belderrain TR.Nicasio MC.Nolan SP.Kaur H.Díaz-Requejo MM.Pérez PJ. J. Am. Chem. Soc. 2004, 126: 10846 - 6
Lebel H.Davi M.Díez-González S.Nolan SP. J. Org. Chem. 2007, 72: 144 - 7
Díez-González S.Correa A.Cavallo L.Nolan SP. Chem. Eur. J. 2006, 12: 7558 -
8a
Dupuy S.Lazreg F.Slawin AMZ.Cazin CSJ.Nolan SP. Chem. Commun. 2011, 47: 5455 -
8b
Boogaerts IIF.Nolan SP. Chem. Commun. 2011, 47: 3021 -
8c
Boogaerts IIF.Fortman GC.Furst MRL.Cazin CSJ.Nolan SP. Angew. Chem. Int. Ed. 2010, 49: 8674 -
8d
Fortman GC.Poater A.Levell JW.Gaillard S.Slawin AMZ.Samuel IDW.Cavallo L.Nolan SP. Dalton Trans. 2010, 39: 10382 -
9a
Van Veldhuizen JJ.Campbell JE.Giudici RE.Hoveyda AH. J. Am. Chem. Soc. 2005, 127: 6877 -
9b
Tominaga S.Oi Y.Kato T.An DK.Okamoto S. Tetrahedron Lett. 2004, 45: 5585 -
9c
Winn CL.Guillen F.Pytkowicz J.Roland S.Mangeney P.Alexakis A. J. Organomet. Chem. 2005, 690: 5672 -
9d
Martin D.Kehrli S.d’Augustin M.Clavier H.Mauduit M.Alexakis A. J. Am. Chem. Soc. 2006, 128: 8416 -
9e
Brown MK.May TL.Baxter CA.Hoveyda AH. Angew. Chem. Int. Ed. 2007, 46: 1097 -
9f
Lee K.-S.Brown MK.Hird AW.Hoveyda AH. J. Am. Chem. Soc. 2006, 128: 7182 - 10
Grandbois A.Mayer M.-E.Bedard M.Collins SK.Michel T. Chem. Eur. J. 2009, 15: 9655 - For examples using Cu(I) see:
-
11a
Mankad NP.Gray TG.Laitar DS.Sadighi JP. Organometallics 2004, 23: 1191 -
11b
Schneider N.César V.Bellemin-Laponnaz S.Gade LH. J. Organomet. Chem. 2005, 690: 5556 -
11c
Michon C.Ellern A.Angelici RJ. Inorg. Chim. Acta 2006, 359: 4549 - For examples using Cu(II) see:
-
11d
Hu X.Castro-Rodriguez I.Meyer K. J. Am. Chem. Soc. 2003, 125: 12237 -
11e
Yun J.Kim D.Yun H. Chem. Commun. 2005, 5181 - For examples using Cu(I) see:
-
12a
Arnold PL.Scarisbrick AC.Blake AJ.Wilson C. Chem. Commun. 2001, 2340 -
12b
Wan X.-J.Xu F.-B.Li Q.-S.Song H.-B.Zhang Z.-Z. Inorg. Chem. Commun. 2005, 8: 1053 -
12c
Winkelmann O.Näther C.Lüning U. J. Organomet. Chem. 2008, 693: 923 - For an example using Cu(II) see:
-
12d
Larsen AO.Leu W.Nieto Oberhuber C.Campbell JE.Hoveyda AH. J. Am. Chem. Soc. 2004, 126: 11130 -
13a
Citadelle CA.Le Nouy E.Bisaro F.Slawin AMZ.Cazin CSJ. Dalton Trans. 2010, 39: 4489 -
13b
Tulloch AAD.Danopoulos AA.Kleinhenz S.Light ME.Hursthouse MB.Eastham G. Organometallics 2001, 20: 2027 -
13c
Simonovic S.Whitwood AC.Clegg W.Harrington RW.Hursthouse MB.Male L.Douthwaite RE. Eur. J. Inorg. Chem. 2009, 1786 -
14a
Sauvage X.Demonceau A.Delaude L. Macromol. Symp. 2010, 293: 28 -
14b
Sauvage X.Demonceau A.Delaude L. Adv. Synth. Catal. 2009, 351: 2031 -
14c
Delaude L.Sauvage X.Demonceau A.Wouters J. Organometallics 2009, 28: 4056 -
14d
Voutchkova AM.Feliz M.Clot E.Eisenstein O.Crabtree RH. J. Am. Chem. Soc. 2007, 129: 12834 -
14e
Voutchkova AM.Appelhans LN.Chianese AR.Crabtree RH. J. Am. Chem. Soc. 2005, 127: 17624 - 18
Tudose A.Delaude L.André B.Demonceau A. Tetrahedron Lett. 2006, 47: 8529 - 19
Duong H.Tekavec T.Arif A.Louie J. Chem. Commun. 2004, 112 - 21
Diez-Gonzalez S.Scott N.Nolan S. Organometallics 2006, 25: 2355 - 22
Kaur H.Kauer Zinn F.Stevens E.Nolan S. Organometallics 2004, 23: 1157 - 23
Goj L.Blue E.Delp S.Gunnoe T.Cundari T.Pierpont A.Peterson J.Boyle P. Inorg. Chem. 2006, 45: 9032 - 24
Diez-Gonzalez S.Stevens ED.Nolan SP. Chem. Commun. 2008, 4747 - 25
Diez-Gonzalez S.Escudero-Adan EC.Benet-Buchholz J.Stevens ED.Slawin AMZ.Nolan SP. Dalton Trans. 2010, 39: 7595 - 26
Broggi J.Diez-Gonzalez S.Petersen J.Berteina-Raboin S.Nolan S. P.Agrofoglio L. Synthesis 2008, 141
References
One advantage of the decarboxylation method is the absence of strong bases such as potassium tert-butoxide, which has been shown to react with Cu(NHC)2X complexes to form an unwanted byproduct Cu(NHC)(Ot-Bu). See ref. 7.
16Although complexes 6a-c are depicted as ionic, at this time there is yet no proof as to whether the halide counterions are ligated to the copper atom or not.
17The ¹H and ¹³C NMR spectra for Cu(NHC)X and Cu(NHC)2X complexes are very similar. The complexes can be easily distinguished by TLC [the Cu(NHC)2X complexes are much more polar than the analogous Cu(NHC)X complexes] and by MS.
20Pevere V.; FR 2,921,924, 2009