Synthesis 2011(21): 3552-3562  
DOI: 10.1055/s-0030-1260221
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Isoindoles via 1,3-Dipolar Cycloaddition of α-Azido Carbonyl Compounds onto Intramolecular Alkenes and Their Conversion into Substituted Aromatic Hydrocarbons

Benny Meng Kiat Tong, Benjamin Wei-Qiang Hui, Sze Hui Chua, Shunsuke Chiba*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Fax: (+65) 6791 1961; e-Mail: shunsuke@ntu.edu.sg;
Weitere Informationen

Publikationsverlauf

Received 19 July 2011
Publikationsdatum:
14. September 2011 (online)

Abstract

α-Azido carbonyl compounds bearing a 2-alkenylaryl moiety in the α-position are found to be promising precursors in the synthesis of isoindoles via 1,3-dipolar cycloaddition of azides to alkenes. Applications of these isoindoles in the preparation of 1,2,3,4-tetrasubstituted naphthalene and 9,10-disubstituted anthracene derivatives were developed via [4+2]-cycloaddition reactions of isoindoles with dimethyl acetylenedicarboxylate and benzynes, respectively, followed by deaminative aromatization.

    References

  • 1a Mori S. Nagata M. Nakahata Y. Yasuta K. Goto R. Kimura M. Taya M. J. Am. Chem. Soc.  2010,  132:  4054 
  • 1b Varotto A. Nam C.-Y. Radivojevic I. Tome JPC. Cavaleiro JAS. Black CT. Drain CM. J. Am. Chem. Soc.  2010,  132:  2552 
  • 1c Mi B.-X. Wang P.-F. Liu M.-W. Kwong H.-L. Wong N.-B. Lee C.-S. Lee S.-T. Chem. Mater.  2003,  15:  3148 
  • 1d Ding Y. Hay AS.
    J. Polym. Sci. Part A: Polym. Chem.  1999,  37:  3293 
  • 1e Gauvin S. Santerre F. Dodelet JP. Ding Y. Hlil AR. Hay AS. Anderson J. Armstrong NR. Gorjanc TC. D’Iorio M. Thin Solid Films  1999,  353:  218 
  • 1f Matuszewski BK. Givens RS. Srinivasachar K. Carlson RG. Higuchi T. Anal. Chem.  1987,  59:  1102 
  • 1g Zweig A. Metzler G. Maurer A. Roberts BG. J. Am. Chem. Soc.  1967,  89:  4091 
  • 2a Duan S. Sinha-Mahapatra DK. Herndon JW. Org. Lett.  2008,  10:  1541 
  • 2b Chen Y.-L. Lee M.-H. Wong W.-Y. Lee AWM. Synlett  2006,  2510 
  • 2c Chen Z. Müller P. Swager TM. Org. Lett.  2006,  8:  273 
  • 2d LeHoullier CS. Gribble GW. J. Org. Chem.  1983,  48:  2364 
  • 2e Kricka LJ. Vernon JM. J. Chem. Soc., Perkin Trans. 1  1973,  766 
  • 2f Kricka LJ. Vernon JM. J. Chem. Soc., Chem. Commun.  1971,  942 
  • 3a Watanabe Y. Shim SC. Uchida H. Mitsudo T. Takegami Y. Tetrahedron  1979,  35:  1433 
  • 3b Simons SS. Johnson DF. J. Chem. Soc., Chem. Commun.  1977,  374 
  • 3c Bonnett R. Brown RFC. J. Chem. Soc., Chem. Commun.  1972,  393 
  • For recent reports on isoindole formation by other methods, see:
  • 4a Kitamura M. Moriyasu Y. Okauchi T. Synlett  2011,  643 
  • 4b Solé D. Serrano O. J. Org. Chem.  2010,  75:  6267 
  • 4c Ohmura T. Kijima A. Suginome M. J. Am. Chem. Soc.  2009,  131:  6070 
  • 4d Heugebaert TSA. Stevens CV. Org. Lett.  2009,  11:  5018 
  • 4e Solé D. Serrano O. Org. Biomol. Chem.  2009,  7:  3382 
  • 4f Yeom H.-S. Lee J.-E. Shin S. Angew. Chem. Int. Ed.  2008,  47:  7040 
  • 4g Kadzimirsz D. Hildebrandt D. Merz K. Dyker G. Chem. Commun.  2006,  661 
  • 4h Murashima T. Tamai R. Nishi K. Nomura K. Fujita K. Uno H. Ono N. J. Chem. Soc., Perkin Trans. 1  2000,  995 
  • 4i Dialer H. Polborn K. Beck W. J. Organomet. Chem.  1999,  589:  21 
  • 5 Hui BW.-Q. Chiba S. Org. Lett.  2009,  11:  729 
  • 6a Nair V. Suja TD. Tetrahedron  2007,  63:  12247 
  • 6b Padwa A. In 1,3-Dipolar Cycloaddition Chemistry   Vol. 2:  Padwa A. Wiley-Interscience; New York: 1984.  p.316 
  • 6c Feldman KS. Iyer MR. López CS. Faza ON. J. Org. Chem.  2008,  73:  5090 
  • 6d Zhou Y. Murphy PV. Org. Lett.  2008,  10:  3777 
  • 6e Kim S. Lee YM. Lee J. Lee T. Fu Y. Song Y. Cho J. Kim D. J. Org. Chem.  2007,  72:  4886 
  • 6f Huang X. Shen R. Zhang T. J. Org. Chem.  2007,  72:  1534 
  • 6g Feldman KS. Iyer MR. Hester DK. Org. Lett.  2006,  8:  3113 
  • 6h Feldman KS. Iyer MR. J. Am. Chem. Soc.  2005,  127:  4590 
  • 6i Hassner A. Amarasekara AS. Andisik D. J. Org. Chem.  1988,  53:  27 
  • 6j Liu J.-M. Young J.-J. Li Y.-J. Sha C.-K. J. Org. Chem.  1986,  51:  1120 
  • 6k Sundberg RJ. Pearce BC. J. Org. Chem.  1982,  47:  725 
  • 6l Smith PAS. Chou SP. J. Org. Chem.  1981,  46:  3970 ; and references therein
  • For reports on the mechanism of the elimination of dinitrogen from triazoline intermediates with heterolytic cleavage of the N-N bond; see:
  • 7a Shea KJ. Kim J.-S. J. Am. Chem. Soc.  1992,  114:  4846 
  • 7b Wladkowski BD. Smith RH. Michejda CJ. J. Am. Chem. Soc.  1991,  113:  7893 ; and references therein
  • 8 A radical pathway via homolytic cleavage of the N-N bond of triazoline intermediates is also proposed, for examples, see references 6c, 6g, 6h, and: Broeckx W. Overbergh N. Samyn C. Smets G. L’abbé G. Tetrahedron  1971,  27:  3527 
  • 9 Kobayashi S. Tsuchiya Y. Mukaiyama T. Chem. Lett.  1991,  537 
  • 12a Solé D. Serrano O. Org. Biomol. Chem.  2009,  7:  3382 
  • 12b Kadzimirsz D. Hildebrandt D. Merz K. Dyker G. Chem. Commun.  2006,  661 
  • 13 Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett.  1983,  1211 
  • 14 Pilcher AS. Ammon HL. DeShong P. J. Am. Chem. Soc.  1995,  117:  5166 
  • 15 Matsumoto T. Hosoya T. Katsuki M. Suzuki K. Tetrahedron Lett.  1991,  32:  6735 
  • 16 Gribble GW. Allen RW. LeHoullier CS. Eaton JT. Easton NRJ. Slayton RI. Sibi MP. J. Org. Chem.  1981,  46:  1025 
  • 17 Peña D. Cobas A. Pérez D. Guitián E. Synthesis  2002,  1454 
  • 18 Ganta A. Snowden TS. Synlett  2007,  2227 
  • 19 Peña D. Pérez D. Guitiám E. Castedo L. J. Org. Chem.  2000,  65:  6944 
10

The structure of 2a was secured by X-ray crystallographic analysis (see Supporting Information). CCDC-710407 contains the supplementary crystallographic data for compound 2a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.

11

The introduction of a carbonyl moiety at C1 in isoindoles is indispensable for this isoindole formation. For an example, the reaction of 2′-vinylbenzyl azide under same reaction conditions gave a complex mixture without the desired isoindoles.