Synthesis 2011(19): 3083-3088  
DOI: 10.1055/s-0030-1260164
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Mechanistic Insight into the Halogen Dance Rearrangement of Iodooxazoles

Nicolas Proust, Mathieu F. Chellat, James P. Stambuli*
Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
e-Mail: stambuli@chemistry.ohio-state.edu;
Further Information

Publication History

Received 2 July 2011
Publication Date:
08 August 2011 (online)

Abstract

The lithium diisopropylamide mediated halogen dance reaction of 5-iodooxazoles to generate 4-iodooxazoles was studied. The mechanism of the reaction was investigated and compared to the reported mechanism for the halogen dance rearrangement of 5-bromooxazoles. Reaction conditions were optimized and yields of iodooxazole were improved to a synthetically useful level. The use of 2-(butylsulfanyl)-5-bromooxazole as an organic catalyst turned out to be the cornerstone for the success of this reaction.

    References

  • 1a Vaitiekunas A. Nord FF. Nature  1951,  168:  875 
  • 1b Vaitiekunas A. Nord FF. J. Am. Chem. Soc.  1953,  75:  1764 
  • 2 Bunnett JF. Acc. Chem. Res.  1972,  5:  139 
  • 3a Mallet M. Quéguiner G. Tetrahedron  1979,  35:  1625 
  • 3b Mallet M. Quéguiner G. Tetrahedron  1982,  38:  3035 
  • 3c Mallet M. Branger G. Marsais F. Queguiner G.
    J. Organomet. Chem.  1990,  382:  319 
  • 3d Rocca P. Cochennec C. Marsais F. Thomas-dit-Dumont L. Mallet M. Godard A. Queguiner G. J. Org. Chem.  1993,  58:  7832 
  • 4a Schnurch M. Spina M. Khan AF. Mihovilovic MD. Stanetty P. Chem. Soc. Rev.  2007,  36:  1046 
  • 4b Williams DR. Fu L. Synlett  2010,  591 
  • 5a Lee K. Counceller CM. Stambuli JP. Org. Lett.  2009,  11:  1457 
  • 5b Counceller CM. Eichman CC. Proust N. Stambuli JP. Adv. Synth. Catal.  2011,  353:  79 
  • 5c Williams DR. Fu L. Org. Lett.  2010,  808 
  • 5d Williams DR. Fu L. Synlett  2010,  1641 
  • 6a Searle PA. Molinski TF. J. Am. Chem. Soc.  1995,  117:  8126 
  • 6b Forsyth CJ. Ahmed F. Cink RD. Lee CS. J. Am. Chem. Soc.  1998,  120:  5597 
  • 6c Williams DR. Kiryanov AA. Emde U. Clark MP. Berliner MA. Reeves JT. Angew. Chem. Int. Ed.  2003,  42:  1258 
  • 7a Sandler JS. Colin PL. Kelly M. Fenical W. J. Org. Chem.  2006,  71:  7245 
  • 7b Chellat MF. Proust N. Lauer MG. Stambuli JP. Org. Lett.  2011,  13:  3246 
  • 7c Larivée A. Unger JB. Thomas M. Wirtz C. Dubost C. Handa S. Fürstner A. Angew. Chem. Int. Ed.  2011,  50:  304 
  • 8 Shin-ya K. Wierzba K. Matsuo K.-i. Ohtani T. Yamada Y. Furihata K. Hayakawa Y. Seto H. J. Am. Chem. Soc.  2001,  123:  1262 
  • 9 Grushin VV. Alper H. Chem. Rev.  1994,  94:  1047 
  • 10 Flegeau EF. Popkin ME. Greaney MF. Org. Lett.  2008,  10:  2717 
  • 11 Stanetty P. Spina M. Mihovilovic MD. Synlett  2005,  1433 
  • 12 Raucher S. Koolpe GA. J. Org. Chem.  1978,  43:  3794 
  • 13a Terinek M. Vasella A. Helv. Chim. Acta  2003,  86:  3482 
  • 13b Dorfmueller HC. Borodkin VS. Schimpl M. Shepherd SM. Shpiro NA. van Aalten DMF. J. Am. Chem. Soc.  2006,  128:  16484 
  • 13c Wu J.-P. Emeigh J. Gao DA. Goldberg DR. Kuzmich D. Miao C. Potocki I. Qian KC. Sorcek RJ. Jeanfavre DD. Kishimoto K. Mainolfi EA. Nabozny G. Peng C. Reilly P. Rothlein R. Sellati RH. Woska JR. Chen S. Gunn JA. O’Brien D. Norris SH. Kelly TA.
    J. Med. Chem.  2004,  47:  5356