Abstract
Novel methods for efficient synthesis of 1,4-diamyloxy-5,6,7,8-multisubstituted-2,3-dicyanonaphthalenes
were successfully developed, starting from easily available 2,3-dicyanohydroquinone
as a common single compound through only three steps, the first
dibromination of 2,3-dicyanohydroquinone, the second Mitsunobu dialkylation
of 2,3-dicyano-5,6-diboromo-1,4-hydroquinone, and the last Diels-Alder-type
of cycloaddition between 1,4-alkoxy-2,3-dicyano-5,6-diboromobenzenes
and multisubstituted furans, followed by reductive deoxygenation
with Mg turning. The obtained 1,4-diamyloxy-5,6,7,8-multisubstituted-2,3-dicyanonaphthalenes
were easily transformed into the corresponding naphthalocyanines
in 20-45% yields which showed their λmax at 867-892
nm.
Key words
multisubstituted-2,3-dicyanonaphthalenes - Mg metal naphthalocyanines - benzyne - νmax at 867-892
nm
Reference and Notes
1a
Wagner HJ.
Loutfly RO.
Hsiao CK.
J.
Mater. Sci.
1982,
17:
2281
1b
Moser FH.
Thomas AL.
The Phthalocyanines
Vol. 1:
CRC
Press;
Boca Raton / FL:
1983.
1c
Schichiri T.
Suezaki M.
Inoue T.
Chem.Lett.
1992,
1717
1d
Shirai O.
Kobayashi T.
Phthalocyanines - Chemistry
and Functions
IPC Publisher;
Tokyo:
1997.
2a
Liljeroth P.
Lepp J.
Meyer G.
Science
2007,
317:
1203
2b
Nakamura Y.
Katagiri Y.
Tonomoto Y.
Technical
Reports of Fuji Xerox Co. Ltd.
2006,
16:
20
2c . inventors; JP 211174.
3a . inventors; JP 78307.
3b . inventors; JP-A-67826.
3c Shirai O. inventors; JP-A- 118273.
4 Substitution of activated chlorine
groups of 6-nitro-2,3-dichloronaphthalene to cyano groups by sodium
cyanide was reported,5 although the yield was inadequate
(46%) and application to preparation of many various derivatives
may be difficult.
5
Nakamori T.
Chiba T.
Kasai T.
Nippon
Kagaku Zasshi
1981,
12:
1916
Recent studies on Mitsunobu Reaction,
see:
6a
Anne-Sophie F.
Sebastien D.
Jacques B.
Regis V.
Claude D.
Axelle A.
Brigitte J.
Tetrahedron
2008,
64:
10741
6b
Wang G.
Ella-Menye J.-R.
St. Martin M.
Yang H.
Williams K.
Org. Lett.
2008,
10:
4203
6c
Vintonyak VV.
Kunze B.
Sasse F.
Maier ME.
Chem. Eur. J.
2008,
14:
11132
7
Cook MJ.
Heeney MJ.
Chem. Eur. J.
2000,
21:
39587
8a
Forgione P.
Wilson PD.
Fallis AG.
Tetrahedron Lett.
2000,
41:
17
8b
Yoshina S.
Yamamoto K.
Yakugaku Zasshi
1974,
94:
1312
8c
Nakano M.
Tsurugi H.
Satoh T.
Miura M.
Org. Lett.
2008,
10:
1851
8d
Li ZF.
Zheng YM.
Liu YK.
J.
Indian Chem. Soc.
2002,
79:
188
9a
Berson JA.
Swidler R.
J.
Am. Chem. Soc.
1953,
75:
1721
9b
Morton GE.
Barrett AGM.
J.
Org. Chem.
2005,
70:
3525
9c
Biland-Thommen AS.
Raju GS.
Blagg J.
Whitea AJP.
Barretta AGM.
Tetrahedron Lett.
2004,
45:
3181
10
Repine JT.
Johnson DS.
White AD.
Favor FD.
Stier MA.
Maiti SN.
Tetrahedron
Lett.
2007,
48:
5539
11a
Yamamoto Y.
Kawano S.
Maekawa H.
Nishiguchi I.
Synlett.
2004,
30
11b
Maekawa H.
Sakai M.
Uchida T.
Kita Y.
Nishiguchi I.
Tetrahedron
Lett.
2004,
45:
607
12a
Cook MJ.
Dunn AJ.
Howe SD.
Thomson AJ.
J. Chem. Soc., Perkin Trans. 1
1988,
2453
12b . inventors; JP 39378.