Subscribe to RSS
DOI: 10.1055/s-0030-1259698
Asymmetric Mukaiyama Aldol Reaction Catalyzed by C 2-Symmetric N,N′-Dioxide-Ni(II) Complex
Publication History
Publication Date:
08 March 2011 (online)
Abstract
The N,N′-dioxide-Ni(II) complex has been developed for the asymmetric Mukaiyama aldol reaction between glyoxal derivatives and enolsilane which produced the 2-hydroxy-1,4-dicarbonyl compounds in moderate to high yields (up to 95%) with excellent enantioselectivities (up to 95% ee). Based on the configuration of the product and X-ray structure of the catalyst, a possible transition state was proposed to explain the mechanism of the reaction.
Key words
asymmetric catalysis - N,N′-dioxides complex - nickel - Mukaiyama aldol reaction - glyoxal derivatives
- Supporting Information for this article is available online:
- Supporting Information
- For reviews, see:
-
1a
Gröger H.Vogl EM.Shibasaki M. Chem. Eur. J. 1998, 4: 1137 -
1b
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357 -
1c
Denmark SE.Stavenger RA. Acc. Chem. Res. 2000, 33: 432 -
1d
Palomo C.Oiarbide M.García JM. Chem. Eur. J. 2002, 8: 36 -
1e
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506 -
1f
Adachi S.Harada T. Eur. J. Org. Chem. 2009, 3661 -
1g
Geary LM.Hultin PG. Tetrahedron: Asymmetry 2009, 20: 131 - 2
Kobayashi S.Fujishita Y.Mukaiyama T. Chem. Lett. 1990, 1455 - For selected examples, see:
-
3a
Furuta K.Maruyama T.Yamamoto H. J. Am. Chem. Soc. 1991, 113: 1041 -
3b
Carreira EM.Singer RA.Lee W. J. Am. Chem. Soc. 1994, 116: 8837 -
3c
Mikami K.Matsukawa S. J. Am. Chem. Soc. 1994, 116: 4077 -
3d
Keck GE.Krishnamurthy D. J. Am. Chem. Soc. 1995, 117: 2363 -
3e
Krüger J.Carreira EM. J. Am. Chem. Soc. 1998, 120: 837 -
3f
Evans DA.Kozlowski MC.Murry JA.Burgey CS.Campos KR.Connell BT.Staples RJ. J. Am. Chem. Soc. 1999, 121: 669 -
3g
Yamashita Y.Ishitani H.Shimizu H.Kobayashi S. J. Am. Chem. Soc. 2002, 124: 3292 -
3h
Le JC.-D.Pagenkopf BL. Org. Lett. 2004, 6: 4097 -
3i
Oisaki K.Zhao D.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 7164 -
3j
Fu F.Teo YC.Loh TP. Tetrahedron Lett. 2006, 47: 4267 -
3k
Kiyooka S.Matsumoto S.Shibata T.Shinozaki K. Tetrahedron 2010, 66: 1806 ; and references therein - For selected examples, see:
-
4a
Denmark SE.Fan Y.
J. Am. Chem. Soc. 2002, 124: 4233 -
4b
Denmark SE.Wynn T.Beutner GL. J. Am. Chem. Soc. 2002, 124: 13405 -
4c
Zhuang W.Poulsen TB.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 3284 -
4d
McGilvra JD.Unni AK.Modi K.Rawal VH. Angew. Chem. Int. Ed. 2006, 45: 6130 -
4e
Adachi S.Harada T. Org. Lett. 2008, 10: 4999 -
4f
Gondi VB.Hagihara K.Rawal VH. Angew. Chem. Int. Ed. 2009, 48: 776 -
4g
García-García P.Lay F.García-García P.Rabalakos C.List B. Angew. Chem. Int. Ed. 2009, 48: 4363 -
4h
Cheon CH.Yamamoto H. Org. Lett. 2010, 12: 2476 ; and references therein -
5a
Evans DA.MacMillan DWC.Campos KR.
J. Am. Chem. Soc. 1997, 119: 10859 -
5b
Evans DA.Burgey CS.Kozlowski MC.Tregay SW. J. Am. Chem. Soc. 1999, 121: 686 -
5c
Evans DA.Masse CE.Wu J. Org. Lett. 2002, 4: 3375 -
5d
Langner M.Bolm C. Angew. Chem. Int. Ed. 2004, 43: 5984 -
5e
Akullian LC.Snapper ML.Hoveyda AH. J. Am. Chem. Soc. 2006, 128: 6532 -
5f
Engers JL.Pagenkopf BL. Eur. J. Org. Chem. 2009, 6109 -
5g
Gondi VB.Hagihara K.Rawal VH. Chem. Commun. 2010, 46: 904 - For reviews on N-dioxides in the asymmetric catalysis, see:
-
6a
Chelucci G.Murineddu G.Pinna GA. Tetrahedron: Asymmetry 2004, 15: 1373 -
6b
Malkov AV.Kočovský P. Eur. J. Org. Chem. 2007, 29 - For examples of our recent work, see:
-
7a
Zheng K.Shi J.Liu XH.Feng XM. J. Am. Chem. Soc. 2008, 130: 15770 -
7b
Zheng K.Liu XH.Zhao JN.Yang Y.Lin LL.Feng XM. Chem. Commun. 2010, 46: 3771 -
7c
Xie MS.Chen XH.Zhu Y.Gao B.Lin LL.Liu XH.Feng XM. Angew. Chem. Int. Ed. 2010, 49: 3799 -
7d
Hui YH.Jiang J.Wang WT.Chen WL.Cai YF.Lin LL.Liu XH.Feng XM. Angew. Chem. Int. Ed. 2010, 49: 4290 -
7e
Li W.Wang J.Hu XL.Shen K.Wang WT.Chu YY.Lin LL.Liu XH.Feng XM. J. Am. Chem. Soc. 2010, 132: 8532 - 8
Terada M.Soga K.Momiyama N. Angew. Chem. Int. Ed. 2008, 47: 4122
References and Notes
General Procedure
for the Asymmetric Mukaiyama Aldol Reaction between Glyoxal Derivative
1a and Enolsilane 3a:
Ligand L7 (0.01
mmol) and Ni(BF4)2˙6H2O
(0.01 mmol) were dissolved in CH2Cl2 (0.5
mL) and stirred at 30 ˚C for 1 h. Then the solvent
was removed and glyoxal derivative 1a (0.1
mmol) was added. After adding CH2Cl2 (1.0
mL) and enolsilane 3a (0.15 mmol), the
mixture was stirred at 30 ˚C for 24 h under N2 atmosphere.
Then, THF (2.0 mL) and 1 N HCl (1.0 mL) were added to the reaction
mixture. After stirring at r.t. for 30 min, this solution was poured
into a separatory funnel and diluted with Et2O (5.0 mL)
and H2O (1.0 mL). After mixing, the aqueous layer was
discarded and the ether layer was washed with sat. aq NaHCO3 (5.0
mL) and brine (5.0 mL). The resulting ether layer was dried over anhyd
MgSO4, and concentrated in vacuo. The crude product was
chromatographed on silica gel to give the desired adduct 5a: 94% yield; 92% ee {determined
by HPLC analysis with a Chiral OJ-H column, hexane-2-PrOH (80:20),
1.0 mL/min, UV = 254 nm; t
R1 = 18.6
min, t
R2 = 20.5
min); [α]D
²5 +11.9
(c 0.454, in CH2Cl2}; ¹H
NMR (400 MHz, CDCl3): δ = 3.37-3.49
(m, 2 H), 4.04 (d, J = 6.0 Hz,
1 H), 5.68-5.73 (m, 1 H), 7.46-7.55 (m, 4 H),
7.58-7.66 (m, 2 H), 7.95-8.01 (m, 4 H) ppm.