Synlett 2011(5): 594-614  
DOI: 10.1055/s-0030-1259693
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Construction of Diverse Ring Systems Based on Allene-Multiple Bond Cycloaddition

Fuyuhiko Inagaki, Shinji Kitagaki, Chisato Mukai*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Fax: +81(76)2344410; e-Mail: cmukai@kenroku.kanazawa-u.ac.jp;
Further Information

Publication History

Received 10 November 2010
Publication Date:
25 February 2011 (online)

Abstract

Cycloaddition and cycloisomerization based on the interaction between an allene and another multiple bond, such as an alkyne, alkene, or additional allene, enabled us to build a variety of useful cyclic structures. This account describes our research on allene cycloaddition and cycloisomerization, categorizing the reactions by the proper reaction mode and the cyclic framework of the product.

1 Introduction

2 Construction of Bicyclo[m.3.0] Skeletons via Carbonylative [2+2+1] Cycloaddition

2.1 From Allene-Ynes and Aza Analogues

2.2 From Allene-Enes

2.3 From Bis-allenes

3 Construction of Bicyclo[m.2.0] Skeletons via [2+2] Cyclo­addition

3.1 From Allene-Ynes

3.2 From Bis-allenes

4 Construction of Bicyclo[4.4.0] Skeletons via 6π-Electrocyclization/[4+2] Cycloaddition

5 Construction of Monocyclic Polyenes via Cycloisomerization

5.1 From Allene-Ynes

5.2 From Allene-Enes

5.3 From Bis-allenes

6 Construction of Bicyclo[5.m.0] Skeletons via [5+2] Cyclo­addition

7 Conclusions and Outlook

    References

  • 1a Landor SR. The Chemistry of the Allenes   Academic; London: 1982. 
  • 1b Schuster HF. Coppola GM. Allenes in Organic Synthesis   Wiley; New York: 1984. 
  • 1c Pasto DJ. Tetrahedron  1984,  40:  2805 
  • 1d Zimmer R. Dinesh CU. Nandanan E. Khan FA. Chem. Rev.  2000,  100:  3067 
  • 1e Hashmi ASK. Angew. Chem. Int. Ed.  2000,  39:  3590 
  • 1f Hoffmann-Röder A. Krause N. Angew. Chem. Int. Ed.  2004,  43:  1196 
  • 1g Krause N. Hashmi ASK. Modern Allene Chemistry   Wiley-VCH; Weinheim: 2004. 
  • 1h Ma S. Chem. Rev.  2005,  105:  2829 
  • 1i Brummond KM. DeForrest JE. Synthesis  2007,  795 
  • 2a Khand IU. Knox GR. Pauson PL. Watts WE.
    J. Chem. Soc. D  1971,  36a 
  • 2b Khand IU. Knox GR. Pauson PL. Watts WE. Foreman MI. J. Chem. Soc., Perkin Trans. 1  1973,  977 
  • For selected reviews, see:
  • 3a Geis O. Schmalz H.-G. Angew. Chem. Int. Ed.  1998,  37:  911 
  • 3b Brummond KM. Kent JL. Tetrahedron  2000,  56:  3263 
  • 3c Gibson SE. Stevenazzi A. Angew. Chem. Int. Ed.  2003,  42:  1800 
  • 3d Blanco-Urgoiti J. Añorbe L. Pérez-Serrano L. Domínguez G. Pérez-Castells J. Chem. Soc. Rev.  2004,  33:  32 
  • 3e Boñaga LVR. Krafft ME. Tetrahedron  2004,  60:  9795 
  • 3f Shibata T. Adv. Synth. Catal.  2006,  348:  2328 
  • For the construction of seven-membered and larger rings via the Pauson-Khand reaction of enynes with aromatic rings as a template, see:
  • 4a Pérez-Serrano L. Casarrubios L. Domínguez G. Pérez-Castells J. Chem. Commun.  2001,  2602 
  • 4b Krafft ME. Fu Z. Boñaga LVR. Tetrahedron Lett.  2001,  42:  1427 
  • 4c Lovely CJ. Seshadri H. Wayland BR. Cordes AW. Org. Lett.  2001,  3:  2607 
  • 5a Mukai C. Uchiyama M. Sakamoto S. Hanaoka M. Tetrahedron Lett.  1995,  36:  5761 
  • 5b Mukai C. Kim JS. Uchiyama M. Sakamoto S. Hanaoka M. J. Chem. Soc., Perkin Trans. 1  1998,  2903 
  • 5c Mukai C. Kim JS. Uchiyama M. Hanaoka M. Tetrahedron Lett.  1998,  39:  7909 
  • 5d Mukai C. Kim JS. Sonobe H. Hanaoka M. J. Org. Chem.  1999,  64:  6822 
  • 5e Mukai C. Sonobe H. Kim JS. Hanaoka M. J. Org. Chem.  2000,  65:  6654 
  • Intramolecular allenic [2+2+1] cycloaddition was first reported by Narasaka and Brummond and their co-workers, see:
  • 6a Narasaka K. Shibata T. Chem. Lett.  1994,  315 
  • 6b Shibata T. Koga Y. Narasaka K. Bull. Chem. Soc. Jpn.  1995,  68:  911 
  • 6c Kent JL. Wan H. Brummond KM. Tetrahedron Lett.  1995,  36:  2407 
  • 6d Brummond KM. Wan H. Kent JL. J. Org. Chem.  1998,  63:  6535 
  • For reviews of allenic [2+2+1] cycloadditions, see:
  • 7a Brummond KM. An Allenic [2+2+1] Cycloaddition, In Advances in Cycloaddition   Vol. 6:  Harmata M. JAI; Stamford: 1999.  p.211-237  
  • 7b Alcaide B. Almendros P. Eur. J. Org. Chem.  2004,  3377 
  • 8 Ahmar M. Locatelli C. Colombier D. Cazes B. Tetrahedron Lett.  1997,  38:  5281 
  • 9a Mukai C. Yamashita H. Hanaoka M. Org. Lett.  2001,  3:  3385 
  • 9b Mukai C. Ohta M. Yamashita H. Kitagaki S. J. Org. Chem.  2004,  69:  6867 
  • 10 Kitagaki S. Inagaki F. Mukai C. J. Synth. Org. Chem., Jpn.  2009,  67:  618 
  • 11 Horner L. Binder V. Justus Liebigs Ann. Chem.  1972,  757:  33 
  • 12a Nájera C. Yus M. Tetrahedron  1999,  55:  10547 
  • 12b Simpkins NS. Sulphones in Organic Synthesis   Pergamon; Oxford: 1993. 
  • 13a Mukai C. Nomura I. Yamanishi K. Hanaoka M. Org. Lett.  2002,  4:  1755 
  • 13b Mukai C. Nomura I. Kitagaki S. J. Org. Chem.  2003,  68:  1376 
  • Rhodium(I)-catalyzed carbonylative [2+2+1] cycloaddition was first reported by Narasaka and co-workers and Jeong et al., see:
  • 14a Koga Y. Kobayashi T. Narasaka K. Chem. Lett.  1998,  249 
  • 14b Kobayashi T. Koga Y. Narasaka K. J. Organomet. Chem.  2001,  624:  73 
  • 14c Jeong N. Lee S. Sung BK. Organometallics  1998,  17:  3642 
  • 15 Sanger AR. J. Chem. Soc., Dalton Trans.  1977,  120 
  • 16 Brummond et al. independently developed the [RhCl(CO)2]2-catalyzed [2+2+1] cycloaddition of allene-ynes, see: Brummond KM. Chen H. Fisher KD. Kerekes AD. Rickards B. Sill PC. Geib SJ. Org. Lett.  2002,  4:  1931 
  • 17 Mukai C. Inagaki F. Yoshida T. Yoshitani K. Hara Y. Kitagaki S. J. Org. Chem.  2005,  70:  7159 
  • 18 Mukai C. Hirose T. Teramoto S. Kitagaki S. Tetrahedron  2005,  61:  10983 
  • 19 Inagaki F. Kawamura T. Mukai C. Tetrahedron  2007,  63:  5154 
  • 20 Bayden AS. Brummond KM. Jorden KD. Organometallics  2006,  25:  5204 
  • 21 Mukai C. Inagaki F. Yoshida T. Kitagaki S. Tetrahedron Lett.  2004,  45:  4117 
  • 22 Hirose T. Miyakoshi N. Mukai C. J. Org. Chem.  2008,  73:  1061 
  • 23 Aburano D. Inagaki F. Tomonaga S. Mukai C. J. Org. Chem.  2009,  74:  5590 
  • 24 Saito T. Shiotani M. Otani T. Hasaba S. Heterocycles  2003,  60:  1045 
  • 25 Tang Y. Deng L. Zhang Y. Dong G. Chen J. Yang Z. Org. Lett.  2005,  7:  593 
  • 26a Mukai C. Yoshida T. Sorimachi M. Odani A. Org. Lett.  2006,  8:  83 
  • 26b Aburano D. Yoshida T. Miyakoshi N. Mukai C. J. Org. Chem.  2007,  72:  6878 
  • 27 Saito T. Sugizaki K. Otani T. Suyama T. Org. Lett.  2007,  9:  1239 
  • 28 Negishi E. Choueiry D. Nguyen TB. Swanson DR. Suzuki N. Takahashi T. J. Am. Chem. Soc.  1994,  116:  9751 
  • 29a Wender PA. Croatt MP. Deschamps NM. J. Am. Chem. Soc.  2004,  126:  5948 
  • 29b

    In this paper, Wender et al. reported that several dienes failed to give the [2+2+1] cycloadducts under the optimized [RhCl(CO)2]2-catalyzed conditions.

  • 30 Makino T. Itoh K. J. Org. Chem.  2004,  69:  395 
  • 31 Inagaki F. Mukai C. Org. Lett.  2006,  8:  1217 
  • 32a Bolton GL. Hodges JC. Rubin JR. Tetrahedron  1997,  53:  6611 
  • 32b Ishizaki M. Satoh H. Hoshino O. Chem. Lett.  2002,  1040 
  • 32c Ishizaki M. Sato H. Hoshino O. Nishitani K. Hara H. Heterocycles  2004,  63:  827 
  • 33 Hayashi Y. Miyakoshi N. Kitagaki S. Mukai C. Org. Lett.  2008,  10:  2385 
  • 34a Inagaki F. Narita S. Hasegawa T. Kitagaki S. Mukai C. Angew. Chem. Int. Ed.  2009,  48:  2007 
  • 34b Kawamura T. Inagaki F. Narita S. Takahashi Y. Hirata S. Kitagaki S. Mukai C. Chem. Eur. J.  2010,  16:  5173 
  • 35 Chung and co-workers reported the cobalt/rhodium-nanoparticle-catalyzed [2+2+1] cycloaddition of 1,5-bis-allenes, see: Park JH. Kim E. Kim H.-M. Choi SY. Chung YK. Chem. Commun.  2008,  2388 
  • 36 Recently, Ma and co-workers reported the rhodium-catalyzed and molybdenum-mediated [2+2+1] cycloaddition of 1,5-bis-allenes in a review article, see: Chen G. Jiang X. Fu C. Ma S. Chem. Lett.  2010,  39:  78 
  • 37 Watanabe Y. Ueno Y. Araki T. Endo T. Okawara M. Tetrahedron Lett.  1986,  27:  215 
  • For other examples dealing with the desulfonylation of our products, see:
  • 38a Miyakoshi N. Ohgaki Y. Masui K. Mukai C. Heterocycles  2007,  74:  185 
  • 38b

    See also ref. 23

  • 39 Brummond KM. Chen D. Org. Lett.  2005,  7:  3473 
  • 40 Oh CH. Gupta AK. Park DI. Kim N. Chem. Commun.  2005,  5670 
  • 41 Mukai C. Hara Y. Miyashita Y. Inagaki F. J. Org. Chem.  2007,  72:  4454 
  • 42a Padwa A. Filipkowski MA. Meske M. Watterson SH. Ni Z. J. Am. Chem. Soc.  1993,  115:  3776 
  • 42b Padwa A. Meske M. Murphree SS. Watterson SH. Ni Z. J. Am. Chem. Soc.  1995,  117:  7071 
  • 42c Padwa A. Lipka H. Watterson SH. Murphree SS. J. Org. Chem.  2003,  68:  6238 
  • 43 Siebert MR. Osbourn JM. Brummond KM. Tantillo DJ. J. Am. Chem. Soc.  2010,  132:  11952 
  • For examples of the thermal [2+2] cycloaddition of bis-allenes, see:
  • 44a Aubert P. Princet B. Pornet J. Synth. Commun.  1997,  27:  2615 
  • 44b Shimizu T. Sakamaki K. Kamigata N. Tetrahedron Lett.  1997,  38:  8529 
  • 44c Jiang X. Cheng X. Ma S. Angew. Chem. Int. Ed.  2006,  45:  8009 
  • For palladium-catalyzed [2+2] cycloadditions of the two allenic internal double bonds of bis-allenes, see:
  • 44d Kang S.-K. Baik T.-G. Kulak AN. Ha Y.-H. Lim Y. Park J. J. Am. Chem. Soc.  2000,  122:  11529 
  • 44e Hong Y.-T. Yoon S.-K. Kang S.-K. Yu C.-M. Eur. J. Org. Chem.  2004,  4628 
  • 44f

    See also ref. 44c. For gold-catalyzed [2+2] cycloadditions of the two allenic internal double bonds of bis-allenes, see:

  • 44g Kim SM. Park JH. Kang YK. Chung YK. Angew. Chem. Int. Ed.  2009,  48:  4532 
  • For nickel-catalyzed intermolecular [2+2] cycloadditions of allenes, see:
  • 44h Saito S. Hirayama K. Kabuto C. Yamamoto Y. J. Am. Chem. Soc.  2000,  122:  10776 
  • 45a Tanaka K. Takamoto N. Tezuka Y. Kato M. Toda F. Tetrahedron  2001,  57:  3761 
  • 45b Toda F. Tanaka K. Sano I. Isozaki T. Angew. Chem. Int. Ed. Engl.  1994,  33:  1757 
  • 45c Sugimoto Y. Hanamoto T. Inanaga J. Appl. Organomet. Chem.  1995,  9:  369 
  • 45d Inanaga J. Sugimoto Y. Hanamoto T. Tetrahedron Lett.  1992,  33:  7035 
  • 45e Ezcurra JE. Moore HW. Tetrahedron Lett.  1993,  34:  6177 
  • 45f Braverman S. Duar Y. J. Am. Chem. Soc.  1990,  112:  5830 
  • 45g Höhn J. Weyerstahl P. Chem. Ber.  1983,  116:  808 
  • 45h Staab HA. Draeger B. Chem. Ber.  1972,  105:  2320 
  • 45i Bowes CM. Montecalvo DF. Sondheimer F. Tetrahedron Lett.  1973,  3181 
  • 45j Ben-Efraim DA. Sondheimer F. Tetrahedron Lett.  1963,  313 
  • 46 For the preparation of allenes via the [2,3]-sigmatropic rearrangement of propargyl phosphinites, see: Hashmi ASK. Synthesis of Allenes by Isomerization Reactions, In Modern Allene Chemistry   Vol. 1:  Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004.  p.3-50  
  • The tandem formation and intramolecular [4+2] cycloaddition of 1-phosphinyl-1-vinylallenes, triggered by the [2,3]-sigmatropic rearrangement of the corresponding propargyl phosphinites, has been reported, see:
  • 47a Okamura WH. Curtin ML. Synlett  1990,  1 
  • 47b Curtin ML. Okamura WH. J. Org. Chem.  1990,  55:  5278 
  • 48a Kitagaki S. Okumura Y. Mukai C. Tetrahedron Lett.  2006,  47:  1849 
  • 48b Kitagaki S. Okumura Y. Mukai C. Tetrahedron  2006,  62:  10311 
  • 49 The production of 67 (X = PPh2, R = H) from 64a was described in a review article by Grissom et al.; however, no original manuscript dealing with the details of this reaction is available: Grissom JW. Gunawardena GU. Klingberg D. Huang D. Tetrahedron  1996,  52:  6453 
  • 50 Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  4467 
  • 51 Kitagaki S. Katoh K. Ohdachi K. Takahashi Y. Shibata D. Mukai C. J. Org. Chem.  2006,  71:  6908 
  • 52 Kitagaki S. Ohdachi K. Katoh K. Mukai C. Org. Lett.  2006,  8:  95 
  • 53a Myers AG. Zheng B. J. Am. Chem. Soc.  1996,  118:  4492 
  • 53b Myers AG. Zheng B. Org. Synth.  1998,  76:  178 
  • 54 Hakuba H. Kitagaki S. Mukai C. Tetrahedron  2007,  63:  12639 
  • 55 Brown AC. Carpino LA. J. Org. Chem.  1985,  50:  1749 
  • 56 Movassaghi M. Ahmad OK. J. Org. Chem.  2007,  72:  1838 
  • For other examples of allene-yne cycloisomerizations, see:
  • 57a Brummond KM. Chen H. Sill P. You L. J. Am. Chem. Soc.  2002,  124:  15186 
  • 57b Brummond KM. Mitasev B. Org. Lett.  2004,  6:  2245 
  • 57c Shibata T. Takasue Y. Kadowaki S. Takagi K. Synlett  2003,  268 
  • 57d Jiang X. Ma S. J. Am. Chem. Soc.  2007,  129:  11600 
  • 58 Kinderman SS. van Maarseveen JH. Schoemaker HE. Hiemstra H. Rutjes FPJT. Org. Lett.  2001,  3:  2045 
  • 59 Mukai C. Itoh R. Tetrahedron Lett.  2006,  47:  3971 
  • For examples of allene-ene cycloisomerizations, see:
  • 60a Makino T. Itoh K. Tetrahedron Lett.  2003,  44:  6335 
  • 60b Brummond KM. Chen H. Mitasev B. Casarez AD. Org. Lett.  2004,  6:  2161 
  • 60c

    See also ref. 30

  • 61 Fürstner A. Langemann K. J. Am. Chem. Soc.  1997,  119:  9130 
  • For other examples of bis-allene cycloisomerizations, see:
  • 62a Ma S. Lu P. Lu L. Hou H. Wei J. He Q. Gu Z. Jiang X. Jin X. Angew. Chem. Int. Ed.  2005,  44:  5275 
  • 62b Lu P. Ma S. Org. Lett.  2007,  9:  5319 
  • 62c Ma S. Lu L. Chem. Asian J.  2007,  2:  199 
  • 62d Lu P. Ma S. Org. Lett.  2007,  9:  2095 
  • 63 For the metal-mediated synthesis of medium-sized rings, see: Yet L. Chem. Rev.  2000,  100:  2963 
  • For recent reviews, see:
  • 64a Carson CA. Kerr MA. Chem. Soc. Rev.  2009,  38:  3051 
  • 64b Rubin M. Rubina M. Gevorgyan V. Chem. Rev.  2007,  107:  3117 
  • 64c Yu M. Pagenkopf BL. Tetrahedron  2005,  61:  321 
  • 64d Rubina M. Gevorgyan V. Tetrahedron  2004,  60:  3129 
  • 64e Kulinkovich OG. Chem. Rev.  2003,  103:  2597 
  • 65a Wender PA. Takahashi H. Witulski B. J. Am. Chem. Soc.  1995,  117:  4720 
  • 65b Wender PA. Husfeld CO. Langkopf E. Love JA. Pleuss N. Tetrahedron  1998,  54:  7203 
  • 65c Wender PA. Sperandio D. J. Org. Chem.  1998,  63:  4164 
  • 65d Wender PA. Husfeld CO. Langkopf E. Love JA. J. Am. Chem. Soc.  1998,  120:  1940 
  • 65e Wender PA. Glorius F. Husfeld CO. Langkopf E. Love JA. J. Am. Chem. Soc.  1999,  121:  5348 
  • 65f Wender PA. Fuji M. Husfeld CO. Love JA. Org. Lett.  1999,  1:  137 
  • 65g Wender PA. Dyckman AJ. Husfeld CO. Kadereit D. Love JA. Rieck H. J. Am. Chem. Soc.  1999,  121:  10442 
  • 65h Wender PA. Zhang L. Org. Lett.  2000,  2:  2323 
  • 65i Wender PA. Bi FC. Brodney MA. Gosselin F. Org. Lett.  2001,  3:  2105 
  • 65j Wender PA. Williams TJ. Angew. Chem. Int. Ed.  2002,  41:  4550 
  • 65k Gómez FJ. Kamber NE. Deschamps NM. Cole AP. Wender PA. Waymouth RM. Organometallics  2007,  26:  4541 
  • For the rhodium(I)-catalyzed asymmetric cycloaddition of vinylcyclopropanes with alkynes, see:
  • 66a Wender PA. Haustedt LO. Lim J. Love JA. Williams TJ. Yoon J.-Y. J. Am. Chem. Soc.  2006,  128:  6302 
  • 66b Shintani R. Nakatsu H. Takatsu K. Hayashi T. Chem. Eur. J.  2009,  15:  8692 
  • For mechanistic considerations, see:
  • 67a Yu Z.-X. Wender PA. Houk KN. J. Am. Chem. Soc.  2004,  126:  9154 
  • 67b Yu Z.-X. Cheong PH.-Y. Liu P. Legault CY. Wender PA. Houk KN. J. Am. Chem. Soc.  2008,  130:  2378 
  • 67c Liu P. Cheong PH.-Y. Yu Z.-X. Wender PA. Houk KN. Angew. Chem. Int. Ed.  2008,  47:  3939 
  • 68a Owada Y. Matsuo T. Iwasawa N. Tetrahedron  1997,  53:  11069 
  • 68b Hayashi M. Ohmatsu T. Meng Y.-P. Saigo K. Angew. Chem. Int. Ed.  1998,  37:  837 
  • 68c Murakami M. Itami K. Ubukata M. Tsuji I. Ito Y. J. Org. Chem.  1998,  63:  4 
  • 68d Schmittel M. Mahajan AA. Bucher G. Bats JW. J. Org. Chem.  2007,  72:  2166 
  • 68e Hiroi K. Kato F. Oguchi T. Saito S. Sone T. Tetrahedron Lett.  2008,  49:  3567 
69

A successful example of a [RhCl(CO)2]2-catalyzed [5+2] cycloaddition involving terminal alkyne and (E)-2-(1-ethoxycyclopropyl)vinyl moieties was reported: See ref. 65g.