Synlett 2011(4): 521-524  
DOI: 10.1055/s-0030-1259537
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Carbazoles by Gold(I)-Catalyzed Carbocyclization of 2-(Enynyl)indoles

Chandrasekaran Praveen, Paramasivan Thirumalai Perumal*
Organic Chemistry Division, Central Leather Research Institute (CSIR Laboratory), Adyar, Chennai 600 020, India
Fax: +91(44)24911589; e-Mail: ptperumal@gmail.com;
Further Information

Publication History

Received 21 December 2010
Publication Date:
08 February 2011 (online)

Abstract

A new synthetic protocol for carbazoles through gold(I)-catalyzed intramolecular hydroarylation of (Z)-2-(enynyl)indoles was achieved in good yields. The requisite (Z)-2-(enynyl)indoles were synthesized stereoselectively by trimethylgallium-promoted, Z-selective Wittig olefination of N-alkylindole-2-carboxaldehydes with propargyl ylides. Substrates possessing both alkyl as well as aromatic groups are well tolerated under these reaction conditions.

    References and Notes

  • 1a Ito C. Itoigawa M. Aizawa K. Yoshida K. Ruangrungsi N. Furukawa H. J. Nat. Prod.  2009,  72:  1202 
  • 1b McErlean CSP. Sperry J. Blake AJ. Moody CJ. Tetrahedron  2007,  63:  10963 
  • 1c Carusso A. Lancelot J.-C. El-Kashef H. Sinicropi MS. Legay R. Lesnard A. Rault S. Tetrahedron  2009,  65:  10400 
  • 1d Mal D. Senapathi BK. Pahari P. Tetrahedron  2007,  63:  3768 
  • 1e Fousteris MA. Papakyriakou A. Koutsourea A. Manioudaki M. Lampropoulou E. Papadimitriou E. Spyroulias GA. Nikolaropoulos SS. J. Med. Chem.  2008,  51:  1048 
  • 1f Knöll J. Knölker H.-J. Tetrahedron Lett.  2006,  47:  6079 
  • 1g Bergman J. Pelcman B. Pure Appl. Chem.  1990,  62:  1967 
  • 2 Knölker HJ. Reddy KR. Chem. Rev.  2002,  102:  4303 
  • 3a Stokes BJ. Jovanović B. Dong H. Richert KJ. Riell RD. Driver TG. J. Org. Chem.  2009,  74:  3225 
  • 3b Tsang WCP. Zheng N. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  14560 
  • 3c Liu Z. Larock RC. Org. Lett.  2004,  6:  3739 
  • 3d Kong A. Han X. Lu X. Org. Lett.  2006,  8:  1339 
  • 3e Zhao J. Larock RC. Org. Lett.  2005,  7:  701 
  • 3f Jean DJSt. Poon SF. Schwarzbach JL. Org. Lett.  2007,  9:  4897 
  • 3g Jordan-Hore JA. Carin CC. Gulias M. Beck EM. Gaunt MJ. J. Am. Chem. Soc.  2008,  130:  16184 
  • 3h Kong W. Fu C. Ma S. Chem. Commun.  2009,  4572 
  • 4a Praveen C. Kumar KH. Muralidharan D. Perumal PT. Tetrahedron  2008,  64:  2369 
  • 4b Praveen C. Sagayaraj YW. Perumal PT. Tetrahedron Lett.  2009,  50:  644 
  • 4c Praveen C. Kiruthiga P. Perumal PT. Synlett  2009,  1990 
  • 4d Praveen C. Karthikeyan K. Perumal PT. Tetrahedron  2009,  65:  9244 
  • 4e Praveen C. Jegatheesan S. Perumal PT. Synlett  2009,  2795 
  • 4f Praveen C. Kalyanasundaram A. Perumal PT. Synlett  2010,  777 
  • 4g Praveen C. Iyyappan C. Perumal PT. Tetrahedron Lett.  2010,  51:  4767 
  • 4h Praveen C. Dheenkumar P. Perumal PT. Bioorg. Med. Chem. Lett.  2010,  20:  7292 
  • 4i Praveen C. Parthasarathy K. Perumal PT. Synlett  2010,  1635 
  • 5a Hashmi ASK. Hutchings GJ. Angew. Chem.  2006,  118:  8064 
  • 5b Hashmi ASK. Hutchings GJ. Angew. Chem. Int. Ed.  2006,  45:  7896 
  • 5c Hashmi ASK. Rudolph M. Chem. Soc. Rev.  2008,  37:  1766 
  • 6a Zhang L. J. Am. Chem. Soc.  2005,  127:  16804 
  • 6b Ferrer C. Echavarren AM. Angew. Chem. Int. Ed.  2006,  45:  1105 
  • Despite the commercial availability of some N-alkylindole-2-carboxaldehydes, we prepared other N-substituted indole-2-carboxaldehydes in our laboratory using literature procedures, see:
  • 7a Benincori T. Marchesi A. Pilati T. Ponti A. Rizzo S. Sannicolò F. Chem. Eur. J.  2009,  15:  94 
  • 7b Tsotinis A. Afroudakis PA. Davidson K. Prashar A. Sugden D. J. Med. Chem.  2007,  50:  6436 
  • 7c Sechi M. Derudas M. Dallocchio R. Dessì A. Bacchi A. Sannia L. Carta F. Palomba M. Ragab O. Chan C. Shoemaker R. Sei S. Dayam R. Neamati N.
    J. Med. Chem.  2004,  47:  5298 
  • 7d Li C.-F. Liu H. Liao J. Cao Y.-J. Liu X.-P. Xiao W.-J. Org. Lett.  2007,  9:  1847 
  • 7e Choshi T. Sada T. Fujimoto H. Nagayama C. Sugino E. Hibino S. J. Org. Chem.  1997,  62:  2535 
  • For the bromination of propargyl alcohols, see:
  • 8a Kwong FY. Lee HW. Qiu L. Lam WH. Li Y.-M. Kwong HL. Chan ASC. Adv. Synth. Catal.  2005,  347:  1750 
  • For the synthetic applicability of Au/Ag catalytic systems, see:
  • 9a Johansson MJ. Gorin DJ. Staben ST. Toste FD. J. Am. Chem. Soc.  2005,  127:  18002 
  • 9b Enomoto T. Obika S. Yasui Y. Takemoto Y. Synlett  2008,  1647 
  • 9c Lee JH. Toste FD. Angew. Chem. Int. Ed.  2007,  46:  912 
  • 9d Horino Y. Luzung MR. Toste FD. J. Am. Chem. Soc.  2006,  128:  11364 
  • 9e Ito Y. Sawamura M. Hayashi T. J. Am. Chem. Soc.  1986,  108:  6405 
  • 9f Shi Z. He C. J. Am. Chem. Soc.  2004,  126:  5964 
  • 9g Hashmi ASK. Blanco MC. Kurpejović E. Frey W. Adv. Synth. Catal.  2006,  348:  709 
  • 9h Hashmi ASK. In Silver in Organic Chemistry   John Wiley and Sons, Inc.; Hoboken: 2010.  Chap. 12. p.357-379  
  • For the use of gold catalysis in hydroarylation reactions, see:
  • 10a Reetz MT. Sommer K. Eur. J. Org. Chem.  2003,  3485 
  • 10b Tarselli MA. Liu A. Gagné MR. Tetrahedron  2009,  65:  1785 
  • 10c Shi Z. He C. J. Org. Chem.  2004,  69:  3669 
  • 10d Hashmi ASK. Blanco MC. Eur. J. Org. Chem.  2006,  4340 
  • 10e Mamane V. Hannen P. Furstner A. Chem. Eur. J.  2004,  10:  4556 
  • 10f Hashmi ASK. Ding L. Bats JW. Fischer P. Frey W. Chem. Eur. J.  2003,  9:  4339 
  • 10g Hashmi ASK. Schwarz L. Choi J.-H. Frost TM. Angew. Chem. Int. Ed.  2000,  39:  2285 ; Angew. Chem. 2000, 112, 2382
  • 10h Dyker G. Muth E. Hashmi ASK. Ding L. Adv. Synth. Catal.  2003,  345:  1247 
  • 11 Nishimura Y. Shiraishi T. Yamaguchi M. Tetrahedron Lett.  2008,  49:  3492 
  • 14 Hashmi ASK. Salathé R. Frey W. Eur. J. Org. Chem.  2007,  1648 
  • 15a Hashmi ASK. Angew. Chem.  2010,  122:  5360 
  • 15b Hashmi ASK. Angew. Chem. Int. Ed.  2010,  49:  5232 
  • 16 Hoffmann D. Rathkamp G. Nesnow S. Anal. Chem.  1969,  41:  1256 
12

Typical procedure for the Z -selective Wittig olefination: To a degassed solution of propargyl ylide 4a (395 mg, 1.2 mmoL) in anhydrous THF (5 mL) under an N2 atmosphere, was added Me3Ga (1.0 M in hexane, 1.5 mL, 1.5 mmoL) and the mixture was stirred for 10 min at 0 ˚C. To this reaction mixture was added a solution of N-methylindole-2-carboxaldehyde (3a; 158 mg, 1.00 mmoL) in THF (5 mL) and stirring was continued for 5 h. After completion of the reaction as indicated by TLC, the reaction was quenched with ice-cold water and extracted with EtOAc (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by column chromatography over silica gel (100-200 mesh) to afford the pure Z-isomer (154 mg, 79%) and E-isomer (27 mg, 14%). 1-Methyl-2-[( Z )-pent-1-en-3-ynyl]-1 H -indole (1a′): Brown paste. IR (neat): 2928, 1733, 1430, 1224, 1119 cm. ¹H NMR (CDCl3, 500 MHz): δ = 2.21 (s, 3 H, CH3), 3.71 (s, 3 H, NCH3), 5.77 (d, J = 11.4 Hz, 1 H, indolyl-CH=CH), 6.70 (d, J = 11.4 Hz, 1 H, indolyl-CH=CH), 7.14-7.15 (m, 1 H, ArH), 7.21-7.30 (m, 2 H, ArH), 7.55 (s, 1 H, indolyl-C(3)H), 7.69 (d, J = 7.6 Hz, 1 H, ArH). ¹³C NMR (CDCl3, 125 MHz): δ = 5.2, 29.5, 78.9, 95.5, 102.9, 108.5, 109.3, 119.9, 121.2, 122.5, 125.3, 127.8, 128.5, 136.1. MS (EI): m/z = 195 [M+]. Anal. Calcd for C14H13N: C, 86.12; H, 6.71; N, 7.17. Found: C, 85.98; H, 6.76; N, 7.17. 1-Methyl-2-[( E )-pent-1-en-3-ynyl]-1 H -indole(1a): Black paste.
IR (neat): 2917, 1735, 1425, 1222, 1123 cm. ¹H NMR (CDCl3, 500 MHz): δ = 2.08 (s, 3 H, CH3), 3.78 (s, 3 H, NCH3), 6.23 (d, J = 15.3 Hz, 1 H, indolyl-CH=CH), 6.75 (s, 1 H, indolyl-C(3)H), 6.96 (d, J = 16.05 Hz, 1 H, indolyl-CH=CH), 7.12 (t, J = 7.6 Hz, 1 H, ArH), 7.23 (t, J = 7.6 Hz, 1 H, ArH), 7.28 (d, J = 8.4 Hz, 1 H, ArH), 7.59 (d, J = 7.6 Hz, 1 H, ArH). ¹³C NMR (CDCl3, 125 MHz): δ = 4.7, 29.8, 79.3, 89.5, 99.3, 109.3, 110.4, 120.1, 120.7, 122.2, 127.8, 128.5, 137.4, 138.3. MS (EI): m/z = 195 [M+]. Anal. Calcd for C14H13N: C, 86.12; H, 6.71; N, 7.17. Found: C, 86.25; H, 6.65; N, 7.10

13

Typical procedure for the carbocyclization of ( Z )-(2-enynyl) indoles: To an air-dried Schlenk flask under N2 atmosphere was added 5 mol% AuCl(Ph3P) and 5 mol% AgSbF6, followed by nitromethane (1 mL) and the mixture was stirred for 15 min at room temperature. A solution of 5a (1.0 mmoL) in nitromethane (2 mL) was added and the mixture was stirred at 60 ˚C. After completion of the reaction as indicated by TLC, the reaction was quenched in water and extracted with EtOAc (3 × 20 mL). The organic layer was dried with anhydrous Na2SO4 and concentrated under reduced pressure. The crude residue was purified by column chromatography to afford pure 4,9-dimethyl-carbazole (2a) as a colorless solid. Mp 105-106 ˚C (Lit.¹6 105-105.5 ˚C). IR (KBr): 3055, 3025, 2952, 2928, 2855, 1625, 1599, 1560, 1467, 1420, 1132 cm. ¹H NMR (500 MHz, CDCl3): δ = 2.97 (s, 3 H, Ar-CH3), 3.89 (s, 3 H, NCH3), 7.09-7.13 (m, 1 H, ArH), 7.30-7.35 (m, 2 H, ArH), 7.45-7.50 (m, 1 H, ArH), 7.55-7.59 (m, 1 H, ArH), 8.25-8.29 (m, 1 H, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 20.9, 29.1, 106.2, 108.4, 119.0, 120.7, 121.5, 122.5, 123.6, 125.2, 125.6, 133.6, 141.1, 141.2. MS (EI): m/z = 195 [M+]. Anal. Calcd for C14H13N: C, 86.12; H, 6.70; N, 7.08. Found: C, 85.95; H, 6.75; 7.20