Synlett 2011(2): 254-258  
DOI: 10.1055/s-0030-1259306
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

From Transient Sulfenic Acids to Disulfide-Functionalized Tripodal Structures

Maria Chiara Aversa, Anna Barattucci*, Paola Bonaccorsi
Dipartimento di Chimica Organica e Biologica, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31 (vill. S. Agata),98166 Messina, Italy
Fax: +39(090)393895; e-Mail: abarattucci@unime.it;
Further Information

Publication History

Received 19 October 2010
Publication Date:
05 January 2011 (online)

Abstract

The condensation of transient polysulfenic acids with thiols, some of which containing privileged structures, has been applied to the synthesis of tripodal disulfides. The easy access to this new kind of conformationally constrained polyfunctionalized compounds opens the way to their application in supramolecular chemistry.

    References and Notes

  • 1a Hennrich G. Anslyn VN. Chem. Eur. J.  2002,  8:  2218 
  • 1b Kim J. Ryu D. Sei Y. Yamaguchi K. Ahn KH. Chem. Commun.  2006,  1136 
  • 1c Frontera A. Morey J. Oliver A. Neus Piña M. Quiñonero D. Costa A. Ballester P. Deyà PM. Anslyn EV. J. Org. Chem.  2006,  71:  7185 
  • 1d Amendola V. Boiocchi M. Colasson B. Fabbrizzi L. Monzani E. Douton-Rodriguez MJ. Spadini C. Inorg. Chem.  2008,  47:  4808 
  • 1e Dell’Anna GM. Annunziata R. Benaglia M. Celentano G. Cozzi F. Francesconi O. Roelens S. Org. Biomol. Chem.  2009,  7:  3871 
  • 2a Walsdorff C. Saak W. Pohl S. J. Chem. Soc., Dalton Trans.  1997,  1857 
  • 2b Tam-Chang S.-W. Stehouwer JS. Hao J. J. Org. Chem.  1999,  64:  334 
  • 2c Yang C. Wong W.-T. J. Mater. Chem.  2001,  11:  2898 
  • 2d Li J.-R. Bu X.-H. Zhang R.-H. Eur J. Inorg. Chem.  2004,  1701 
  • 2e Kaur N. Singh N. Cairns D. Callan JF. Org. Lett.  2009,  11:  2229 
  • 2f Lélias-Vanderperre A. Aubert E. Chambron J.-C. Espinosa E. Eur. J. Org. Chem.  2010,  2701 
  • 3 Aversa MC. Barattucci A. Bonaccorsi P. Eur. J. Org. Chem.  2009,  6355 
  • 4a Hogg DR. In The Chemistry of Sulfenic Acids and Derivatives   Patai S. Wiley and Sons; Chichester: 1990.  p.361 
  • 4b Aversa MC. Barattucci A. Bonaccorsi P. Giannetto P. Curr. Org. Chem.  2007,  11:  1034 
  • 5a Hozoji M. Kimura Y. Kioka N. Ueda K. J. Biol. Chem.  2009,  284:  11293 
  • 5b Beckwith J. Genetics  2007,  176:  733 
  • 5c Tu BP. Ho-Schleyer SC. Travers KJ. Weissman JS. Science  2000,  290:  1571 
  • 5d Creighton TE. Biol. Chem.  1997,  378:  731 
  • 6a Hanton LR. Hellyer RM. Spicer MD. Inorg. Chim. Acta  2006,  359:  3659 
  • 6b Manna SC. Ribas J. Zangrando E. Chaudhuri NR. Polyhedron  2007,  26:  4923 
  • 6c Sun J. Patrick BO. Sherman JC. Tetrahedron  2009,  65:  7296 
  • 7 Vacca A. Nativi C. Cacciarini M. Pergoli R. Roelens S. J. Am. Chem. Soc.  2004,  126:  16456 
  • 8 Houk J. Whitesides GM. J. Am. Chem. Soc.  1987,  109:  6825 
  • 11 Aversa MC. Barattucci A. Bonaccorsi P. Faggi C. Papalia T. J. Org. Chem.  2007,  72:  4486 
  • 13a Walsdorff C. Park S. Kim J. Heo J. Park K.-M. Oh J. Kim K. J. Chem. Soc., Dalton Trans.  1999,  923 
  • 13b McMorran DA. Hartshorn CM. Steel PJ. Polyhedron  2004,  23:  1055 
  • 13c Cordes DB. Hanton LR. Inorg. Chem. Commun.  2005,  8:  967 
  • 14a Gottschaldt M. Pfeifer A. Koth D. Görls H. Dahse H.-M. Möllmann U. Obata M. Yano S. Tetrahedron  2006,  62:  11073 
  • 14b Murthy BN. Sinha S. Surolia A. Jayaraman N. Szilágyi L. Szabó I. Kövér KE. Carbohydr. Res.  2009,  344:  1758 
  • 14c Aversa MC. Barattucci A. Bonaccorsi P. Marino-Merlo F. Mastino A. Sciortino MT. Bioorg. Med. Chem.  2009,  17:  1456 
9

2,4,6-Triethyl-1,3,5-tri{[(2-methoxycarbonylethyl)-thio]methyl}benzene (5)
To a solution of thiol 1a (6.73 g, 22.40 mmol) in dry THF (109 mL) under argon atmosphere at -78 ˚C, 4.7 mL of a 40 wt% Triton B solution in MeOH (10.62 mmol) were added. After 5 min stirring at -78 ˚C, 18 mL of methyl acrylate (197.88 mmol) were added. The reaction, monitored by TLC every 5 min, appeared complete after 30 min. The reaction mixture, evaporated under reduced pressure, was submitted to flash column chromatography, giving 9.90 g (17.72 mmol) of 5 (79% yield). TLC: R f = 0.42 (PE-EtOAc, 60:40). Low-melting solid. ¹H NMR (300 MHz, CDCl3): δ = 3.74 (s, 6 H, 3 × ArCH 2S), 3.67 (s, 9 H, 3 × OCH3), 2.83 (m, 12 H, 3 × CH 2CH3 and 3 × CH 2CH2CO2CH3), 2.63 (t, 6 H, ³ J = 7.0 Hz, 3 × CH 2CO2CH3), 1.26 (t, 9 H, ³ J = 7.6 Hz, 3 × CH2CH 3). ¹³C NMR (75 MHz, CDCl3): δ = 172.3 (3 × CO), 142.3 and 131.1 (C-1-6), 51.6 (3 × CH3), 34.5 (3 × CH2CO2CH3), 31.2 and 28.3 (3 × CH2SCH2), 22.7 (3 × CH2CH3), 16.0 (3 × CH2 CH3). Anal. Calcd for C27H42O6S3 (558.8): C, 58.03; H, 7.58. Found: C, 58.17; H, 7.45.

10

2,4,6-Triethyl-1,3,5-tri{[(2-methoxycarbonylethyl)-sulfinyl]methyl}benzene (6a)
To a CH2Cl2 solution of 5 (1.36 g, 2.43 mmol in 23 mL) at -78 ˚C under continous stirring, 1.57 g of MCPBA (80 wt%, 7.28 mmol) in 50 mL of CH2Cl2 were added slowly. The reaction, monitored by TLC, appeared complete at the end of the oxidant addition. The reaction was quenched by adding a 10 wt% aq solution of Na2S2O3. The organic layers were separated and washed twice with a sat. NaHCO3 solution and then twice with brine. After Na2SO4 dehydration, filtration, and evaporation under reduced pressure, 6a was obtained in an almost quantitative yield as a diastereomeric mixture. TLC: R f = 0.30 (PE-acetone, 25:75). Low-melting solid. ¹H NMR (300 MHz, CDCl3): δ = 4.33 and 4.04 (two br AB d, 6 H, 3 × ArCH 2SO), 3.71 (s, 9 H, 3 × OCH3), 3.20-2.60 (m, 18 H, 3 × CH 2CH3 and 3 × CH2CH2), 1.24 (br t, 9 H, 3 × CH2CH 3). Anal. Calcd for C27H42O9S3 (606.8): C, 53.44; H, 6.98. Found: C, 53.70; H, 7.20.

12

General Procedure for Thermolysis of Trisulfoxides 6a-c and Their Coupling with Thiols 7-12
A solution of 1 mmol of sulfoxide 6 and an excess of thiol in 20 mL of solvent (see Table  [¹] ) was maintained under stirring at the reflux temperature. The reaction was monitored via TLC and ¹H NMR. Except for 7, directly precipitated from 1,4-dioxane solution after simple cooling at r.t., the excess of thiols 8-12 and the purified disulfides 13-18 were recovered from the chromatographic column.
1,3,5-Tri{[(2,3,4,6-tetra- O -acetyl-β- d -glucopyranosyl)-dithio]methyl}-2,4,6-triethylbenzene (17a)
TLC: R f = 0.32 (PE-EtOAc, 50:50). White solid, mp 84 ˚C. [α]D ²8 -95.9 (c 0.02, CHCl3). ¹H NMR (300 MHz, CDCl3):
δ = 5.30-5.10 (m, 9 H, H-2′-4′,2′′-4′′,2′′′-4′′′), 4.66 (m, 3 H, H-1′,1′′,1′′′), 4.33 (AB dd, J 5,6A = 5.0 Hz, J 6A,6B = 12.3 Hz, 3 H, HA-6′,6′′,6′′′), 4.19 (s and AB dd, 9 H, 3 × CH2S and HB-6′,6′′,6′′′), 3.83 (m, 3 H, H-5′,5′′,5′′′), 2.94 (m, 6 H, 3 × CH 2CH3), 2.09, 2.05, 2.04 and 2.03 [4 s, 36 H, 12 × C(O)CH3], 1.30 (t, 9 H, 3 × CH2CH 3). ¹³C NMR (75 MHz, CDCl3): δ = 170.6, 170.2, 169.4 and 169.1 (12 × CO), 144.0 (C-1,3,5), 130.5 (C-2,4,6), 88.2 (C-1′,1′′,1′′′), 76.3, 73.7, 69.3 and 68.1 (C-2′-5′,2′′-5′′,2′′′-5′′′), 62.3 (C-6′,6′′,6′′′), 40.5 (3 × CH2S), 23.4 (3 × CH2CH3), 20.8 (12 × OCH3), 16.3 (3 × CHCH3). Anal. Calcd for C57H78O27S6 (1387.6): C, 49.34; H, 5.67. Found: C, 49.51; H, 5.34.
1,3,5-Tri({[( R )-2- tert -Butoxycarbonylamino-2-methoxycarbonylethyl]dithio}methyl)-2,4,6-triethylbenzene (18)
TLC: R f = 0.60 (PE-EtOAc, 50:50). Transparent oil. ¹H NMR (300 MHz, CDCl3): δ = 5.35 (br d, ³ J = 8.1 Hz, 3 H, 3 × NH), 4.61 (m, 3 H, H-2′,2′′,2′′′), 4.06 and 4.03 (two AB d, ² J = 11.8 Hz, 6 H, 3 Ž ArCH2S), 3.75 (s, 9 H, 3 × OCH3), 3.11 and 3.06 (two AB dd, J 1A,1B = 13.4 Hz, J 1A,2 = J 1B,2 = 4.7 Hz, 6 H, H2-1′,1′′,1′′′), 2.88 (q, ³ J = 7.6 Hz, 6 H, 3 × CH 2CH3), 1.44 [s, 27 H, 3 Ž C(CH3)3], 1.26 (t, 9 H, 3 × CH2CH 3). ¹³C NMR (75 MHz, CDCl3): δ = 171.2 (3 × CO2CH3),155.1 (3 × NHCO), 143.9 (C-1,3,5), 130.1 (C-2,4,6), 80.2 [3 × C(CH3)3], 52.9 (C-2′,2′′,2′′′), 52.7 (3 × OCH3), 41.3 and 38.5 (3 × ArCH2S, C-1′,1′′,1′′′), 28.3 [3 × C(CH3)3], 23.3 (3 × CH2CH3), 16.0 (3 × CH2 CH3). Anal. Calcd for C42H69N3O12S6 (1000.4): C, 50.42; H, 6.95; N, 4.20. Found: C, 50.56; H, 6.75; N, 4.26.