Subscribe to RSS
DOI: 10.1055/s-0030-1259306
From Transient Sulfenic Acids to Disulfide-Functionalized Tripodal Structures
Publication History
Publication Date:
05 January 2011 (online)
Abstract
The condensation of transient polysulfenic acids with thiols, some of which containing privileged structures, has been applied to the synthesis of tripodal disulfides. The easy access to this new kind of conformationally constrained polyfunctionalized compounds opens the way to their application in supramolecular chemistry.
Key words
sulfoxides - thiols - condensation - carbohydrates - pyridines
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Hennrich G.Anslyn VN. Chem. Eur. J. 2002, 8: 2218 -
1b
Kim J.Ryu D.Sei Y.Yamaguchi K.Ahn KH. Chem. Commun. 2006, 1136 -
1c
Frontera A.Morey J.Oliver A.Neus Piña M.Quiñonero D.Costa A.Ballester P.Deyà PM.Anslyn EV. J. Org. Chem. 2006, 71: 7185 -
1d
Amendola V.Boiocchi M.Colasson B.Fabbrizzi L.Monzani E.Douton-Rodriguez MJ.Spadini C. Inorg. Chem. 2008, 47: 4808 -
1e
Dell’Anna GM.Annunziata R.Benaglia M.Celentano G.Cozzi F.Francesconi O.Roelens S. Org. Biomol. Chem. 2009, 7: 3871 -
2a
Walsdorff C.Saak W.Pohl S. J. Chem. Soc., Dalton Trans. 1997, 1857 -
2b
Tam-Chang S.-W.Stehouwer JS.Hao J. J. Org. Chem. 1999, 64: 334 -
2c
Yang C.Wong W.-T. J. Mater. Chem. 2001, 11: 2898 -
2d
Li J.-R.Bu X.-H.Zhang R.-H. Eur J. Inorg. Chem. 2004, 1701 -
2e
Kaur N.Singh N.Cairns D.Callan JF. Org. Lett. 2009, 11: 2229 -
2f
Lélias-Vanderperre A.Aubert E.Chambron J.-C.Espinosa E. Eur. J. Org. Chem. 2010, 2701 - 3
Aversa MC.Barattucci A.Bonaccorsi P. Eur. J. Org. Chem. 2009, 6355 -
4a
Hogg DR. In The Chemistry of Sulfenic Acids and DerivativesPatai S. Wiley and Sons; Chichester: 1990. p.361 -
4b
Aversa MC.Barattucci A.Bonaccorsi P.Giannetto P. Curr. Org. Chem. 2007, 11: 1034 -
5a
Hozoji M.Kimura Y.Kioka N.Ueda K. J. Biol. Chem. 2009, 284: 11293 -
5b
Beckwith J. Genetics 2007, 176: 733 -
5c
Tu BP.Ho-Schleyer SC.Travers KJ.Weissman JS. Science 2000, 290: 1571 -
5d
Creighton TE. Biol. Chem. 1997, 378: 731 -
6a
Hanton LR.Hellyer RM.Spicer MD. Inorg. Chim. Acta 2006, 359: 3659 -
6b
Manna SC.Ribas J.Zangrando E.Chaudhuri NR. Polyhedron 2007, 26: 4923 -
6c
Sun J.Patrick BO.Sherman JC. Tetrahedron 2009, 65: 7296 - 7
Vacca A.Nativi C.Cacciarini M.Pergoli R.Roelens S. J. Am. Chem. Soc. 2004, 126: 16456 - 8
Houk J.Whitesides GM. J. Am. Chem. Soc. 1987, 109: 6825 - 11
Aversa MC.Barattucci A.Bonaccorsi P.Faggi C.Papalia T. J. Org. Chem. 2007, 72: 4486 -
13a
Walsdorff C.Park S.Kim J.Heo J.Park K.-M.Oh J.Kim K. J. Chem. Soc., Dalton Trans. 1999, 923 -
13b
McMorran DA.Hartshorn CM.Steel PJ. Polyhedron 2004, 23: 1055 -
13c
Cordes DB.Hanton LR. Inorg. Chem. Commun. 2005, 8: 967 -
14a
Gottschaldt M.Pfeifer A.Koth D.Görls H.Dahse H.-M.Möllmann U.Obata M.Yano S. Tetrahedron 2006, 62: 11073 -
14b
Murthy BN.Sinha S.Surolia A.Jayaraman N.Szilágyi L.Szabó I.Kövér KE. Carbohydr. Res. 2009, 344: 1758 -
14c
Aversa MC.Barattucci A.Bonaccorsi P.Marino-Merlo F.Mastino A.Sciortino MT. Bioorg. Med. Chem. 2009, 17: 1456
References and Notes
2,4,6-Triethyl-1,3,5-tri{[(2-methoxycarbonylethyl)-thio]methyl}benzene
(5)
To a solution of thiol 1a (6.73
g, 22.40 mmol) in dry THF (109 mL) under argon atmosphere at -78 ˚C,
4.7 mL of a 40 wt% Triton B solution in MeOH (10.62 mmol)
were added. After 5 min stirring at -78 ˚C,
18 mL of methyl acrylate (197.88 mmol) were added. The reaction,
monitored by TLC every 5 min, appeared complete after 30 min. The
reaction mixture, evaporated under reduced pressure, was submitted to
flash column chromatography, giving 9.90 g (17.72 mmol) of 5 (79% yield). TLC: R
f
= 0.42
(PE-EtOAc, 60:40). Low-melting solid. ¹H
NMR (300 MHz, CDCl3): δ = 3.74 (s, 6
H, 3 × ArCH
2S),
3.67 (s, 9 H, 3 × OCH3), 2.83
(m, 12 H, 3 × CH
2CH3 and
3 × CH
2CH2CO2CH3),
2.63 (t, 6 H, ³
J = 7.0 Hz,
3 × CH
2CO2CH3),
1.26 (t, 9 H, ³
J = 7.6
Hz, 3 × CH2CH
3). ¹³C
NMR (75 MHz, CDCl3): δ = 172.3 (3 × CO),
142.3 and 131.1 (C-1-6), 51.6 (3 × CH3), 34.5 (3 × CH2CO2CH3),
31.2 and 28.3 (3 × CH2SCH2),
22.7 (3 × CH2CH3),
16.0 (3 × CH2
CH3).
Anal. Calcd for C27H42O6S3 (558.8):
C, 58.03; H, 7.58. Found: C, 58.17; H, 7.45.
2,4,6-Triethyl-1,3,5-tri{[(2-methoxycarbonylethyl)-sulfinyl]methyl}benzene
(6a)
To a CH2Cl2 solution of 5 (1.36 g, 2.43 mmol in 23 mL) at -78 ˚C
under continous stirring, 1.57 g of MCPBA (80 wt%, 7.28
mmol) in 50 mL of CH2Cl2 were added slowly.
The reaction, monitored by TLC, appeared complete at the end of the
oxidant addition. The reaction was quenched by adding a 10 wt% aq
solution of Na2S2O3. The organic
layers were separated and washed twice with a sat. NaHCO3 solution
and then twice with brine. After Na2SO4 dehydration,
filtration, and evaporation under reduced pressure, 6a was
obtained in an almost quantitative yield as a diastereomeric mixture. TLC: R
f
= 0.30
(PE-acetone, 25:75). Low-melting solid. ¹H NMR
(300 MHz, CDCl3): δ = 4.33 and 4.04
(two br AB d, 6 H, 3 × ArCH
2SO), 3.71 (s, 9 H, 3 × OCH3),
3.20-2.60 (m, 18 H, 3 × CH
2CH3 and 3 × CH2CH2),
1.24 (br t, 9 H, 3 × CH2CH
3). Anal. Calcd for C27H42O9S3 (606.8):
C, 53.44; H, 6.98. Found: C, 53.70; H, 7.20.
General Procedure
for Thermolysis of Trisulfoxides 6a-c and Their Coupling
with Thiols 7-12
A solution of 1 mmol of
sulfoxide 6 and an excess of thiol in 20
mL of solvent (see Table
[¹]
)
was maintained under stirring at the reflux temperature. The reaction
was monitored via TLC and ¹H NMR. Except for 7, directly precipitated from 1,4-dioxane
solution after simple cooling at r.t., the excess of thiols 8-12 and
the purified disulfides 13-18 were recovered from the chromatographic
column.
1,3,5-Tri{[(2,3,4,6-tetra-
O
-acetyl-β-
d
-glucopyranosyl)-dithio]methyl}-2,4,6-triethylbenzene
(17a)
TLC: R
f
= 0.32 (PE-EtOAc,
50:50). White solid, mp 84 ˚C. [α]D
²8 -95.9
(c 0.02, CHCl3). ¹H
NMR (300 MHz, CDCl3):
δ = 5.30-5.10
(m, 9 H, H-2′-4′,2′′-4′′,2′′′-4′′′),
4.66 (m, 3 H, H-1′,1′′,1′′′),
4.33 (AB dd, J
5,6A = 5.0
Hz, J
6A,6B = 12.3
Hz, 3 H, HA-6′,6′′,6′′′),
4.19 (s and AB dd, 9 H, 3 × CH2S
and HB-6′,6′′,6′′′),
3.83 (m, 3 H, H-5′,5′′,5′′′),
2.94 (m, 6 H, 3 × CH
2CH3),
2.09, 2.05, 2.04 and 2.03 [4 s, 36 H, 12 × C(O)CH3],
1.30 (t, 9 H, 3 × CH2CH
3). ¹³C
NMR (75 MHz, CDCl3): δ = 170.6, 170.2,
169.4 and 169.1 (12 × CO), 144.0 (C-1,3,5),
130.5 (C-2,4,6), 88.2 (C-1′,1′′,1′′′),
76.3, 73.7, 69.3 and 68.1 (C-2′-5′,2′′-5′′,2′′′-5′′′),
62.3 (C-6′,6′′,6′′′),
40.5 (3 × CH2S), 23.4 (3 × CH2CH3), 20.8 (12 × OCH3),
16.3 (3 × CHCH3).
Anal. Calcd for C57H78O27S6 (1387.6):
C, 49.34; H, 5.67. Found: C, 49.51; H, 5.34.
1,3,5-Tri({[(
R
)-2-
tert
-Butoxycarbonylamino-2-methoxycarbonylethyl]dithio}methyl)-2,4,6-triethylbenzene
(18)
TLC: R
f
= 0.60 (PE-EtOAc,
50:50). Transparent oil. ¹H NMR (300 MHz, CDCl3): δ = 5.35
(br d, ³
J = 8.1
Hz, 3 H, 3 × NH), 4.61 (m, 3 H, H-2′,2′′,2′′′),
4.06 and 4.03 (two AB d, ²
J = 11.8
Hz, 6 H, 3 Ž ArCH2S), 3.75
(s, 9 H, 3 × OCH3), 3.11 and
3.06 (two AB dd, J
1A,1B = 13.4
Hz, J
1A,2 = J
1B,2 = 4.7
Hz, 6 H, H2-1′,1′′,1′′′),
2.88 (q, ³
J = 7.6
Hz, 6 H, 3 × CH
2CH3),
1.44 [s, 27 H, 3 Ž C(CH3)3],
1.26 (t, 9 H, 3 × CH2CH
3). ¹³C
NMR (75 MHz, CDCl3): δ = 171.2 (3 × CO2CH3),155.1 (3 × NHCO),
143.9 (C-1,3,5), 130.1 (C-2,4,6), 80.2 [3 × C(CH3)3],
52.9 (C-2′,2′′,2′′′),
52.7 (3 × OCH3), 41.3 and
38.5 (3 × ArCH2S,
C-1′,1′′,1′′′),
28.3 [3 × C(CH3)3],
23.3 (3 × CH2CH3),
16.0 (3 × CH2
CH3). Anal.
Calcd for C42H69N3O12S6 (1000.4):
C, 50.42; H, 6.95; N, 4.20. Found: C, 50.56; H, 6.75; N, 4.26.