Synlett 2011(2): 223-226  
DOI: 10.1055/s-0030-1259304
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Modular ‘Click’ Approach to Substituted 2,2′-Bipyridines

Pierangelo Fabbrizzi, Bianca Cecconi, Stefano Cicchi*
Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
Fax: +39(055)4573531; e-Mail: stefano.cicchi@unifi.it;
Further Information

Publication History

Received 11 October 2010
Publication Date:
05 January 2011 (online)

Abstract

The CuAAC reaction was used for the development of a click approach to a series of triazole-substituted bipyridinyl derivatives. 4,4′-Diethinyl 2,2′-bipyridine and 4,4′-diazido 2,2′-bipyridine were synthesized and tested in the cycloaddition reactions. While 4,4′-diazido 2,2′-bipyridine revealed unreactive in CuAAC reactions, its corresponding N,N′-dioxide afforded the expected cycloaddition product.

    References and Notes

  • 1 Blau F. Ber. Dtsch. Chem. Ges.  1888,  21:  1077 
  • 2 Lara FJ. Garcia-Campana AM. Velasco AI. Electrophoresis  2010,  31:  1998 
  • 3 Vicente J. Abad JA. Lòpez-Sàez MJ. Jones PG. Bautista D. Chem. Eur. J.  2010,  16:  661 
  • 4a Balzani V. Marchi E. Semeraro M. Rend. Fis. Acc. Lincei  2010,  21:  91 
  • 4b Moughton AO. O’Reilly RK. Macromol. Rapid Commun.  2010,  31:  37 
  • 4c Yoon TP. Ischay MA. Du J. Nat. Chem.  2010,  2:  527 
  • 4d Morris AJ. Meyer GJ. Fujita E. Acc. Chem. Res.  2009,  42:  1983 
  • 4e Hamann TW. Jensen RA. Martinson ABF. Van Ryswyk H. Hupp JT. Energy Environ. Sci.  2008,  1:  66 
  • 4f Balzani V. Credi A. Venturi M. ChemSusChem  2008,  1:  26 
  • 4g Chelucci G. Thummel RP. Chem. Rev.  2002,  102:  3129 
  • 4h Robertson N. Angew. Chem. Int. Ed.  2006,  45:  2338 
  • 5 Newkome GR. Patri AK. Holder E. Schubert US. Eur. J. Org. Chem.  2004,  235 
  • 6a Schubert US. Eschbaumer C. Angew. Chem. Int. Ed.  2002,  41:  2892 
  • 6b Welter S. Brunner K. Hofstraat JW. De Cola L. Nature (London)  2003,  421:  54 
  • 7a Abbotto A. Manfredi N. Marinzi C. De Angelis F. Mosconi E. Yum JH. Zhang XX. Nazeeruddin MK. Gratzel M. Energy Environ. Sci.  2009,  2:  1094 
  • 7b Abbotto A. Barolo C. Bellotto L. De Angelis F. Grätzel M. Manfredi N. Marinzi C. Fantacci S. Yum JH. Nazeeruddin MK. Chem. Commun.  2008,  5318 
  • 7c Kuang D. Ito S. Wenger B. Klein C. Moser J. Humphry-Baker R. Zakeeruddin S. Grätzel M. J. Am. Chem. Soc.  2006,  128:  4146 
  • 7d Jang S.-R. Yum J.-H. Klein C. Kim K.-J. Wagner P. Officer D. Grätzel M. Nazeeruddin MK. J. Phys. Chem. C  2009,  113:  1998 
  • 7e Hirata N. Lagref J.-J. Palomares EJ. Durrant JR. Nazeeruddin MK. Grätzel M. DiCenso D. Chem. Eur. J.  2004,  10:  595 
  • 8 Kolbe HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 
  • 9a Rostovtsev VA. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 9b Fokin VV. Wu P. Aldrichimica Acta  2007,  40:  7 
  • 9c Fabbrizzi P. Cicchi S. Brandi A. Sperotto E. van Koten G. Eur. J. Org. Chem.  2009,  5423 
  • 10 Brik A. Alexandratos J. Lin Y.-C. Elder JH. Olson AJ. Wlodawer A. Goodsell DS. Wong CH. ChemBioChem  2005,  6:  1167 
  • 11 Paek S. Baik C. Kang M.-s. Kang H. Ko J. J. Organomet. Chem.  2010,  695:  821 
  • 12a Zhang D. Telo JP. Liao C. Hightower SE. Clennan EL. J. Phys. Chem. A  2007,  111:  13567 
  • 12b Maerker G. Case FH. J. Am. Chem. Soc.  1958,  80:  2745 
  • 12c García-Lago R. Alonso-Gómez JL. Sicre C. Cid M.-M. Heterocycles  2008,  75:  57 
  • 12d Ziessel R. Suffert J. Youinou M.-T. J. Org. Chem.  1996,  61:  6535 
  • 14 Tanno M. Kamiya S. Chem. Pharm. Bull.  1979,  27:  1824 
  • 15 Ito S. Satoh A. Nagatomi Y. Hirata Y. Suzuki G. Kimura T. Bioorg. Med. Chem.  2008,  16:  9817 
  • 16 The use of t-BuONO and TMSN3 failed to afford the desired product: Barral K. Moorhouse AD. Moses JE. Org. Lett.  2007,  9:  1809 
  • 18a Colombano G. Travelli C. Galli U. Caldarelli A. Chini MG. Canonico PL. Sorba G. Bifulco G. Tron GC. Genazzani AA. J. Med. Chem.  2010,  53:  616 
  • 18b Shi J. Liu L. He J. Meng X. Guo Q. Chem. Lett.  2007,  36:  1142 
  • 19a Winter A. Wild A. Hoogenboom R. Fijten MWM. Hager M. Fallahpour R.-A. Schubert US. Synthesis  2009,  1506 
  • 19b For one example of substituted pyridines, see: Parsons AT. Johnson JS. J. Am. Chem. Soc.  2009,  131:  3122 
  • 20a Hein CD. Liu X.-M. Wang D. Pharm. Res.  2008,  25:  2216 
  • 20b Bock DV. Hiemstra H. van Maarseveen JH. Eur. J. Org. Chem.  2006,  51 
  • 21 Ito S. Satoh A. Nagatomi Y. Hirata Y. Suzuki G. Kimura T. Satow A. Maehara S. Hikichi H. Hata M. Kawamoto H. Ohta H. Bioorg. Med. Chem.  2008,  16:  9817 
13

4,4′-Bis{1-benzyl-1 H -[1,2,3]triazol-4-yl}-[2,2′]bipyridinyl (3a)
¹H NMR (400 MHz, DMSO-d 6): δ = 9.00 (s, 2 H), 8.87 (dd, J = 0.8, 1.6 Hz, 2 H), 8.76 (dd, J = 0.8, 5.2 Hz, 2 H), 7.89 (dd, J = 1.6, 5.2, Hz, 2 H), 7.44-7.33 (m, 10 H), 5.70 (s, 4 H). ¹³C NMR (50 MHz, CDCl3): δ = 155.9, 149.5, 138.7, 133.8, 129, 128.7, 127.9, 121.1, 119.8, 117, 54.2. IR (KBr): 3112, 3000, 1607, 1400, 1207 cm. MS (EI, 70 eV): m/z (%) = 470.2 (33.3) [M+], 236.7 (6.9), 60 (12.2), 43.8 (100), 32 (71.6). Anal. Calcd for C28H22N8: C, 71.47; H, 4.71; N, 23.81. Found C, 71.23; H, 4.85; N, 23.96.

17

Caution: Azido derivatives are known as potentially explosive compounds. Although we encountered no problems in manipulating these products, it is important to protect the operator from any possible explosion hazard.
4,4′-Diazido[2,2′]bipyridinyl (2)
¹H NMR (300 MHz, CDCl3): δ = 8.58 (d, J = 5.3 Hz, 2 H), 8.15 (d, J = 2.3 Hz, 2 H), 6.96 (dd, J = 2.3, 5.3 Hz, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 157.3, 150.1, 134.1, 114.2, 111.1. IR (KBr): 2117, 1580, 1456, 1207 cm. MS (EI, 70 eV): m/z (%) = 238 (49) [M+], 182 (66), 155 (22), 128 (53), 104 (34), 77 (49), 64 (46), 52 (100). Anal. Calcd for C10H6N8O2: C, 50.42; H, 2.54; N, 47.04. Found C, 50.76; H, 2.26, N, 46.68.

22

4,4′-Diazido[2,2′]bipyridinyl 1,1′-Dioxide (15)
¹H NMR (200 MHz, CDCl3): δ = 8.28 (d, J = 7.2 Hz, 2 H), 7.43 (d, J = 3.2 Hz, 2 H), 7.01 (dd, J = 7.2, 3.2 Hz, 2 H). ¹³C NMR (50 MHz, DMSO-d 6): δ = 143.1, 140.5, 136.5, 119.6, 118.4. IR (KBr): 3025, 2122, 1461, 1430 cm. ESI-MS: m/z (%) = 293.1 (31) [M + Na+], 271.1 (99) [M + H+], 245.1 (32), 229.1 (11). Anal. Calcd for C10H6N8O2: C, 44.45; H, 2.24; N, 41.47. Found: C, 44.12; H, 1.92; N, 41.54.

23

4,4′-Bis{4-phenyl[1,2,3]triazol-1-yl}-[2,2′]bipyridinyl 1,1′-Dioxide (16)
¹H NMR (400 MHz, DMSO-d 6): δ = 9.44 (s, 2 H), 8.65 (d, J = 6.4 Hz, 2 H), 8.47 (s, 2 H), 8.19 (d, J = 6.4 Hz, 2 H), 7.91 (m, 4 H), 7.51 (m, 4 H), 7.40 (m, 2 H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 148.2, 143.2, 141.1, 131.9, 130.2, 129.6, 129, 125.8, 120.1, 119.6, 118.28 IR (KBr): 3055, 1653, 1506 cm. ESI-MS: m/z (%) = 475 (100) [M - H+], 419.3 (36), 376.1 (27), 347.2 (66), 319.3 (32), 284.4 (22), 233.2 (16). Anal. Calcd for C26H18N8O2: C, 65.82; H, 3.82; N, 23.62. Found C, 65.52; H, 3.93; N, 23.27.