Synlett 2011(2): 211-214  
DOI: 10.1055/s-0030-1259303
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

3-(1-Aminoalkyl)pyrazole- and 4,5-Dihydropyrazole-5-carboxylic Acids as Peptide Bond Replacements

Raymond C. F. Jones*, Laura E. Seager, Mark R. J. Elsegood
Department of Chemistry, Loughborough University, Loughborough, Leics, LE11 3TU, UK
Fax: +44(1509)223925; e-Mail: r.c.f.jones@lboro.ac.uk;
Further Information

Publication History

Received 19 August 2010
Publication Date:
05 January 2011 (online)

Abstract

Orthogonally protected 3-(1-aminoalkyl)pyrazole- and 4,5-dihydropyrazole-5-carboxylic acids are prepared by 1,3-dipolar cycloaddition of α-aminonitrile imines with electron-deficient al­kenes; the pyrazole is incorporated into pseudotri- and tetrapeptides.

    References and Notes

  • For example:
  • 1a Leung D. Abbenante G. Fairlie DP. J. Med. Chem.  2000,  43:  305 
  • 1b Olson GL. Bolin DR. Bonner MP. Bös M. Cook CM. Fry DC. Graves BJ. Hatada M. Hill DE. Kahn M. Madison VS. Rusiecki VK. Sarabu R. Sepinwall J. Vincent GP. Voss ME. J. Med. Chem.  1993,  36:  3039 
  • For example:
  • 2a Wu Y.-D. Gellman S. Acc. Chem. Res.  2008,  41:  1231 ; and following articles in this issue, pp. 1233-1438
  • 2b Penke B. Tóth G. Váradi G. In Amino Acids, Peptides and Proteins   Vol. 36:  Davies JS. RSC Publications; Cambridge: 2007.  p.131 ; and earlier volumes in this series
  • For a selection of leading references, see the following and references therein:
  • 3a Chakraborty TK. Rao KS. Kiran MU. Jagadeesh B. Tetrahedron Lett.  2008,  49:  2228 
  • 3b Lesma G. Sacchetti A. Silvani A. Tetrahedron Lett.  2008,  49:  1293 
  • 3c Lomlim L. Einsiedel J. Heinemann FW. Meyer K. Gmeiner P. J. Org. Chem.  2008,  73:  3608 
  • 4a Jones RCF. Dickson J. J. Peptide Sci.  2001,  7:  220 
  • 4b Jones RCF. Dickson J. J. Peptide Sci.  2000,  6:  621 
  • 4c Jones RCF. Gilbert IH. Rees DC. Crockett AK. Tetrahedron  1995,  51:  6315 
  • 4d Jones RCF. Crockett AK. Tetrahedron Lett.  1993,  34:  7459 
  • 5 Jones RCF. Hollis SJ. Iley JN. Tetrahedron: Asymmetry  2000,  11:  3273 
  • 6 Pillainayagam T. PhD Thesis   Loughborough University; UK: 2005. 
  • 7 See, for example: Elguero J. Goya P. Jagerovic N. Silva AMS. Targets in Heterocyclic Systems   Vol. 6:  Attanasi OA. Spinelli D. Italian Society of Chemistry; Rome: 2002.  p.52 
  • For leading references, see:
  • 8a Jones RCF. Choudhury AK. Iley JN. Loizou G. Lumley C. McKee V. Synlett  2010,  654 
  • 8b Jones RCF. Pillainayagam TA. Synlett  2004,  2815 
  • 9 For our exploration with azomethine imines, see: Jones RCF. Hollis SJ. Iley JN. ARKIVOC  2007,  (v):  152 
  • 10 For a similar approach to 4,5-dihydroisoxazole peptide mimetics, see: Chung YJ. Ryu EJ. Keum G. Kim BH. Bioorg. Med. Chem.  1996,  4:  209 
  • 11 Cf. for α-amino-oximes: ref. 10. For α-amino semicarbazides: Ito A. Takahashi R. Baba Y. Chem. Pharm. Bull.  1975,  23:  3081 
  • 12 Patel HV. Vyas KA. Pandey SP. Fernandes PS. Tetrahedron  1996,  52:  661 
  • 13 Bach K. El-Seedi H. Jensen H. Nielsen H. Thomsen I. Torssell K. Tetrahedron  1994,  50:  7543 
  • 15 Sharp JT. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products   Padwa A. Pearson WH. John Wiley and Sons; Hoboken: 2003.  p.473 
  • 16a Molteni G. Ponti A. Orlandi M. New J. Chem.  2002,  26:  1340 
  • 16b Broggini G. Molteni G. Orlandi M. J. Chem. Soc., Perkin Trans. 1  2000,  3742 
  • 17a For a review of silver salts in pyrazole synthesis, see: Molteni G. ARKIVOC  2007,  (ii):  224 
  • 17b De Benassuti L. Garanti L. Molteni G. Tetrahedron  2004,  60:  4627 
  • 18 Zhang X. Breslav M. Grimm J. Guan K. Huang A. Liu F. Maryanoff CA. Palmer D. Patel M. Qian Y. Shaw C. Sorgi K. Stefanick S. Xu D. J. Org. Chem.  2002,  67:  9471 
  • 19 Sakamoto T. Kikugawa Y. Chem. Pharm. Bull.  1988,  36:  800 
  • For leading references, see:
  • 22a Huck BR. Fisk JD. Gellman SH. Org. Lett.  2000,  2:  2607 
  • 22b Fisk JD. Powell DR. Gellman SH. J. Am. Chem. Soc.  2000,  122:  5443 
14

Typical Procedure for NCS Chlorination and Method 1
( S )-3-(1- tert -Butoxycarbonylaminoethyl)-2-phenyl-4,5-dihydro-1 H -pyrazole-5-carboxylic Acid Ethyl Ester (7) To (S)-[1-methyl-2-(phenylhydrazono)ethyl]carbamic acid tert-butyl ester (5, 1.24 g, 4.72 mmol) in EtOAc (15 mL) at 60 ˚C was added NCS (0.71 g, 5.35 mmol, 1.1 equiv) and the mixture stirred for 1 h. Ethyl propenoate (0.918 g, 1.0 mL, 9.16 mmol, 1.9 equiv), KHCO3 (2.41 g, 23.97 mmol, 5.1 equiv) and a few drops of H2O were added and the mixture stirred at 70 ˚C for 20 h. The mixture was then filtered and the filtrate concentrated under reduced pressure to give a dark orange oil, purified by column chromatography on silica gel eluting with light PE-EtOAc (7:1, v/v) to yield the title compound 7 (0.72 g, 41%) in an inseparable 1:1 mixture of diastereomers, as an orange solid; mp 93-95 ˚C. IR (CHCl3): νmax = 3354 (NH), 1599 (C=N), 1708 (C=O), 1168 (CO), 750 (PhCH) cm. ¹H NMR (400 MHz, CDCl3): δ = 1.16 (3 H, t, J = 7.2 Hz, CH2CH 3), 1.35 (3 H, d, J = 7.0 Hz, CH 3CH), 1.38 [9 H, s, C(CH 3)3], 2.99 (1 H, dd, J = 7.2, 17.6 Hz, 4-CHH), 3.24 (1 H, dd, J = 12.4, 17.6 Hz, 4-CHH), 4.14 (2 H, q, J = 7.2 Hz, CH 2CH3), 4.43 (1 H, m, CH3CH), 4.54, 4,57 (each 0.5 H, dd, J = 7.2, 12.4 Hz, CHCO2Et, diastereomers 1 and 2), 5.00 (1 H, br s, NH), 6.78 (1 H, m, ArH), 6.93 (2 H, m, ArH), 7.18 (2 H, m, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 14.2, 21.1 (CH3) 28.2 [(CH3)3C], 40.15 (4-CH2), 46.1 (5-CH), 61.7 (OCH2), 113.0 (PhCH), 113.0, 119.7, 119.8, 129.0 (4 × CH), 129.1 (2 × C), 145.3 (CN), 171.2, 171.5 (2 × CO). MS (EI): m/z = 362 [MH+], 171 (12), 154 (24), 147 (19), 123 (21), 111 (28), 109 (35), 95 (54), 81 (54), 69 (85), 57 (100), 55 (99). HRMS (EI): m/z calcd for C19H27N3O4: 362.2074 [MH+]; found 362.2073 [MH+]. Anal. Calcd (%) for C19H27N3O4: C, 63.1; H, 7.5; N, 11.6. Found: C, 62.6; H, 7.2; N, 11.8.

20

Cf. ref. 16a for a discussion on the reduced rate of nitrile imine cycloadditions with electron-rich dipolarophiles and/or electron-poor dipoles.

21

Crystal Data for 7
C19H27N3O4, M = 361.44, monoclinic, a = 5.14990 (10), b = 11.4316 (4), c = 16.8254 (6) Å, β = 96.320 (2), U = 984.52 (5) ų, T = 120 (2) K, space group P21, graphite monochromated Mo Kα radiation, λ = 0.71073 Å, Z = 2, D c  = 1.219 g cm, F(000) = 388, colourless, dimensions 0.36 × 0.09 × 0.04 mm³, µ = 0.086 mm, 3.02 < θ < 28.19˚, 11290 reflections measured, 2363 unique reflections, R int = 0.0376. The structure was solved by direct methods and refined on F ². Friedel pairs were merged due to the lack of any significant anomalous scattering. wR2 = 0.0833 (all data, 244 parameters); R1 = 0.0351 [2223 data with F ² > 2σ(F ² )]. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. 787832. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or e-mail: deposit@ccdc.cam.ac.uk).