Subscribe to RSS
DOI: 10.1055/s-0030-1259281
Microwave-Assisted Domino Hydroformylation without Syngas
Publication History
Publication Date:
23 December 2010 (online)
Abstract
Hydroformylation is a powerful reaction that has suffered for some negative prejudices related to the use of gaseous H2 and CO. Now it is possible to carry out hydroformylation and different cyclohydrocarbonylations, even on complex substrates, using aqueous formalin as H2 and CO surrogate in few minutes under microwave irradiation. The catalytic system developed by Morimoto (Rh/BINAP for decomposition of formaldehyde and Rh/Xantphos for hydroformylation) is compatible with microwave dielectric heating and with complex substrates containing ligand atoms allowing rapid domino hydroformylation cyclization reactions without using the external supply of gaseous H2 and CO (gas cylinder) and without any particular safety limitation or device.
Key words
microwaves - hydroformylation - homogeneous catalysis - domino reactions
-
1a
Chaudhari RV. Curr. Opin. Drug Discovery Dev. 2008, 11: 820 -
1b
Breit B. Topics Curr. Chem. 2007, 279: 139 -
1c
Breit B.Seiche W. Synthesis 2001, 1 -
1d
van Leeuwen PWNM. In Rhodium-Catalyzed Hydroformylation Kluwer; Dordrecht: 2000. p.1 - 2
Bizzarri SN.Fenelon S.Ishikawa-Yamaki M. Chemical Economics Handbook SRI International; Menlo Park USA: 1999. p.682A - Reviews:
-
3a
Eilbracht P.Bärfacker L.Buss C.Hollmann C.Kitsos-Rzychon BE.Kranemann CL.Rische T.Roggenbuck R.Schmidt A. Chem. Rev. 1999, 99: 3329 -
3b
Eilbracht P.Schmidt AM. Top. Organomet. Chem. 2006, 18: 65 -
3c
Breit B. Acc. Chem. Res. 2003, 36: 264 - Some selected recent examples:
-
4a
Vasylyev M.Alper H. Synthesis 2010, 2893 -
4b
Airiau E.Spangenberg T.Girard N.Breit B.Mann A. Org. Lett. 2010, 12: 528 -
4c
Dübon P.Farwick A.Helmchen G. Synlett 2009, 1413 -
4d
Kemme ST.Smejkal T.Breit B. Adv. Synth. Catal. 2008, 350: 989 -
4e
Chiou W.-H.Mizutani N.Ojima I. J. Org. Chem. 2007, 72: 1871 -
4f
Padwa A.Bur SC. Tetrahedron 2007, 63: 5341 -
4g
Teoh E.Campi EM.Jackson WR.Robinson AJ. Chem. Commun. 2002, 978 -
4h
Hoffmann RW.Brückner D.Gerusz VJ. Heterocycles 2000, 52: 121 -
4i
Bergmann DJ.Campi EM.Jackson WR.Patti AF. Chem. Commun. 1999, 1279 - 5
Ojima I.Tsai C.-Y.Tzamarioudaki M.Bonafoux D. Org. React. 2000, 56: 1 -
6a
Seich W.Schuschkowski A.Breit B. Adv. Synth Catal. 2005, 347: 1488 -
6b
Kemme ST.Smejkal T.Breit B. Chem. Eur. J. 2010, 16: 3423 -
7a
Petricci E.Mann A.Rota A.Schoenfelder A.Taddei M. Org. Lett. 2006, 8: 3725 -
7b
Petricci E.Mann A.Salvadori J.Taddei M. Tetrahedron Lett. 2007, 48: 8501 -
7c
Salvadori J.Airiau E.Girard N.Mann A.Taddei M. Tetrahedron 2010, 66: 3749 -
7d
Airiau E.Chemin C.Girard N.Lonzi G.Mann A.Petricci E.Salvadori J.Taddei M. Synthesis 2010, 2901 - 8
Makado G.Morimoto T.Sugimoto Y.Tsutsumi K.Kagawa N.Kakiuchia K. Adv. Synth. Catal. 2010, 352: 299 - Some examples of the use of formaldehydes in hydroformylation:
-
9a
Smejkal T.Han H.Breit B.Krische MJ. J. Am. Chem. Soc. 2009, 131: 10366 -
9b
Rosales M.Gonzalez A.Gonzalez B.Moratinos C.Perez H.Urdaneta J.Sanchez-Delgado RA. J. Organomet. Chem. 2005, 690: 3095 -
9c
Ahn HS.Han SH.Uhm SJ.Seok WK.Lee HN.Korneeva GA. J. Mol. Catal. A: Chem. 1999, 144: 295 -
9d
Kondo T.Akazome M.Tsuji Y.Watanabe W. J. Org. Chem. 1990, 55: 1286 - Degradation of formaldehyde in carbonylation reactions:
-
10a
Morimoto T.Yamasaki K.Hirano A.Tsutsumi K.Kagawa N.Kakiuchi K.Harada Y.Fukumoto Y.Chatani N.Nishioka T. Org. Lett. 2009, 11: 1777 -
10b
Morimoto T.Fujioka M.Fuji K.Tsutsumi K.Kakiuchi K. J. Organomet. Chem. 2007, 692: 625 -
10c
Morimoto T.Kiyomi K. Angew. Chem. Int. Ed. 2004, 43: 5580 - 11
Airiau E.Girard N.Mann A.Salvadori J.Taddei M. Org. Lett. 2009, 11: 5314 - 12 Domino hydroformylation of compounds 11-13 was described
in:
Airiau E.Spangenberg T.Girard N.Schoenfelder A.Salvadori J.Taddei M.Mann A. Chem. Eur. J. 2008, 14: 10938
Reference and Notes
(3
S
,8a
R
)-3-Phenylhexahydro-5
H
-[1,3]oxazolo[3,2-
a
]-pyridin-5-one
(20) - General Procedure
A MW vessel was
charged with [RhCl(cod)]2 (2.5 mg,
0.005 mmol), BIPHEP (5.2 mg, 0.01 mmol), and Nixantphos (5.5 mg,
0.01 mmol) under nitrogen (the reaction was carried out without
degassing the solution, an experiment done on a degassed solution,
gave comparable results). After adding toluene (3 mL), alkene 11 (103 mg, 0.5 mmol), and formalin (37%,
205 µL, 2.5 mmol), the mixture was heated for 30
min
at 90 ˚C by microwave irradiation at 250 W (value previously
settled on the microwave oven, model Discover from CEM). The solvent
was removed in vacuo and the product purified by column cromatography
(eluent hexane-EtOAc, 4:1) and isolated as a waxy material
(85 mg, 79% yield, dr > 98:2). Characterization
as in ref. 12. Compounds 24-26 were described in ref. 7d and compound 28 in ref. 5. New compounds isolated in
this work:
1-Oxaspiro[4.5]decan-2-ol
(26)
¹H NMR (400 MHz, CDCl3): δ = 5.41
(s-like, 1 H), 3.85 (br s, 1 H), 2.11-1.90 (m, 4 H), 1.58-1.40
(m, 10 H). ¹³C NMR (100 MHz, CDCl3): δ = 100.7,
89.9, 38.7, 35.5, 34.4, 32.2, 25.8, 23.7). ESI-LRMS: m/z = 179 [M + Na]+,
157 [M + H]+.
5-Hydroxy-5-(6-hydroxytetrahydro-2
H
-pyran-2-yl)-pentanal
(27)
¹H NMR (400 MHz, CDCl3): δ = 9.77
(s, 1 Ha), 9.74 (t, J = 1.6
Hz, 1 Hb), 5.48 (s, 1 Ha, 1 Hb),
4.07-4.02 (m, 2 Ha, 2 Hb), 2.54-2.50
(m, 2 Ha), 2.48-2.44 (m, 2 Hb), 1.88-1.45
(m, 10 Ha, 10 Hb). ¹³C
NMR (100 MHz, CDCl3): δ = 201.9, 102.1, 101.4,
78.8, 78.1, 43.2, 34.3, 30.5, 29.8, 28.0, 27.3, 23.9, 19.2, 17.7.
ESI-LRMS: m/z = 257 [M + MeOH + Na]+.