Synlett 2011(2): 199-202  
DOI: 10.1055/s-0030-1259281
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Microwave-Assisted Domino Hydroformylation without Syngas

Elena Cinia, Etienne Airiaub, Nicolas Girardb, André Mannb, Jessica Salvadoria, Maurizio Taddei*a
a Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
Fax: +39(0577)234333; e-Mail: taddei.m@unisi.it;
b Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
Further Information

Publication History

Received 15 October 2010
Publication Date:
23 December 2010 (online)

Abstract

Hydroformylation is a powerful reaction that has suffered for some negative prejudices related to the use of gaseous H2 and CO. Now it is possible to carry out hydroformylation and different cyclohydrocarbonylations, even on complex substrates, using aqueous formalin as H2 and CO surrogate in few minutes under microwave irradiation. The catalytic system developed by Morimoto (Rh/BINAP for decomposition of formaldehyde and Rh/Xantphos for hydroformylation) is compatible with microwave dielectric heating and with complex substrates containing ligand atoms allowing rapid domino hydroformylation cyclization reactions without using the external supply of gaseous H2 and CO (gas cylinder) and without any particular safety limitation or device.

    Reference and Notes

  • 1a Chaudhari RV. Curr. Opin. Drug Discovery Dev.  2008,  11:  820 
  • 1b Breit B. Topics Curr. Chem.  2007,  279:  139 
  • 1c Breit B. Seiche W. Synthesis  2001,  1 
  • 1d van Leeuwen PWNM. In Rhodium-Catalyzed Hydroformylation   Kluwer; Dordrecht: 2000.  p.1 
  • 2 Bizzarri SN. Fenelon S. Ishikawa-Yamaki M. Chemical Economics Handbook   SRI International; Menlo Park USA: 1999.  p.682A 
  • Reviews:
  • 3a Eilbracht P. Bärfacker L. Buss C. Hollmann C. Kitsos-Rzychon BE. Kranemann CL. Rische T. Roggenbuck R. Schmidt A. Chem. Rev.  1999,  99:  3329 
  • 3b Eilbracht P. Schmidt AM. Top. Organomet. Chem.  2006,  18:  65 
  • 3c Breit B. Acc. Chem. Res.  2003,  36:  264 
  • Some selected recent examples:
  • 4a Vasylyev M. Alper H. Synthesis  2010,  2893 
  • 4b Airiau E. Spangenberg T. Girard N. Breit B. Mann A. Org. Lett.  2010,  12:  528 
  • 4c Dübon P. Farwick A. Helmchen G. Synlett  2009,  1413 
  • 4d Kemme ST. Smejkal T. Breit B. Adv. Synth. Catal.  2008,  350:  989 
  • 4e Chiou W.-H. Mizutani N. Ojima I. J. Org. Chem.  2007,  72:  1871 
  • 4f Padwa A. Bur SC. Tetrahedron  2007,  63:  5341 
  • 4g Teoh E. Campi EM. Jackson WR. Robinson AJ. Chem. Commun.  2002,  978 
  • 4h Hoffmann RW. Brückner D. Gerusz VJ. Heterocycles  2000,  52:  121 
  • 4i Bergmann DJ. Campi EM. Jackson WR. Patti AF. Chem. Commun.  1999,  1279 
  • 5 Ojima I. Tsai C.-Y. Tzamarioudaki M. Bonafoux D. Org. React.  2000,  56:  1 
  • 6a Seich W. Schuschkowski A. Breit B. Adv. Synth Catal.  2005,  347:  1488 
  • 6b Kemme ST. Smejkal T. Breit B. Chem. Eur. J.  2010,  16:  3423 
  • 7a Petricci E. Mann A. Rota A. Schoenfelder A. Taddei M. Org. Lett.  2006,  8:  3725 
  • 7b Petricci E. Mann A. Salvadori J. Taddei M. Tetrahedron Lett.  2007,  48:  8501 
  • 7c Salvadori J. Airiau E. Girard N. Mann A. Taddei M. Tetrahedron  2010,  66:  3749 
  • 7d Airiau E. Chemin C. Girard N. Lonzi G. Mann A. Petricci E. Salvadori J. Taddei M. Synthesis  2010,  2901 
  • 8 Makado G. Morimoto T. Sugimoto Y. Tsutsumi K. Kagawa N. Kakiuchia K. Adv. Synth. Catal.  2010,  352:  299 
  • Some examples of the use of formaldehydes in hydroformylation:
  • 9a Smejkal T. Han H. Breit B. Krische MJ. J. Am. Chem. Soc.  2009,  131:  10366 
  • 9b Rosales M. Gonzalez A. Gonzalez B. Moratinos C. Perez H. Urdaneta J. Sanchez-Delgado RA. J. Organomet. Chem.  2005,  690:  3095 
  • 9c Ahn HS. Han SH. Uhm SJ. Seok WK. Lee HN. Korneeva GA. J. Mol. Catal. A: Chem.  1999,  144:  295 
  • 9d Kondo T. Akazome M. Tsuji Y. Watanabe W. J. Org. Chem.  1990,  55:  1286 
  • Degradation of formaldehyde in carbonylation reactions:
  • 10a Morimoto T. Yamasaki K. Hirano A. Tsutsumi K. Kagawa N. Kakiuchi K. Harada Y. Fukumoto Y. Chatani N. Nishioka T. Org. Lett.  2009,  11:  1777 
  • 10b Morimoto T. Fujioka M. Fuji K. Tsutsumi K. Kakiuchi K. J. Organomet. Chem.  2007,  692:  625 
  • 10c Morimoto T. Kiyomi K. Angew. Chem. Int. Ed.  2004,  43:  5580 
  • 11 Airiau E. Girard N. Mann A. Salvadori J. Taddei M. Org. Lett.  2009,  11:  5314 
  • 12 Domino hydroformylation of compounds 11-13 was described in: Airiau E. Spangenberg T. Girard N. Schoenfelder A. Salvadori J. Taddei M. Mann A. Chem. Eur. J.  2008,  14:  10938 
13

(3 S ,8a R )-3-Phenylhexahydro-5 H -[1,3]oxazolo[3,2- a ]-pyridin-5-one (20) - General Procedure
A MW vessel was charged with [RhCl(cod)]2 (2.5 mg, 0.005 mmol), BIPHEP (5.2 mg, 0.01 mmol), and Nixantphos (5.5 mg, 0.01 mmol) under nitrogen (the reaction was carried out without degassing the solution, an experiment done on a degassed solution, gave comparable results). After adding toluene (3 mL), alkene 11 (103 mg, 0.5 mmol), and formalin (37%, 205 µL, 2.5 mmol), the mixture was heated for 30
min at 90 ˚C by microwave irradiation at 250 W (value previously settled on the microwave oven, model Discover from CEM). The solvent was removed in vacuo and the product purified by column cromatography (eluent hexane-EtOAc, 4:1) and isolated as a waxy material (85 mg, 79% yield, dr > 98:2). Characterization as in ref. 12. Compounds 24-26 were described in ref. 7d and compound 28 in ref. 5. New compounds isolated in this work:
1-Oxaspiro[4.5]decan-2-ol (26) ¹H NMR (400 MHz, CDCl3): δ = 5.41 (s-like, 1 H), 3.85 (br s, 1 H), 2.11-1.90 (m, 4 H), 1.58-1.40 (m, 10 H). ¹³C NMR (100 MHz, CDCl3): δ = 100.7, 89.9, 38.7, 35.5, 34.4, 32.2, 25.8, 23.7). ESI-LRMS: m/z = 179 [M + Na]+, 157 [M + H]+.
5-Hydroxy-5-(6-hydroxytetrahydro-2 H -pyran-2-yl)-pentanal (27) ¹H NMR (400 MHz, CDCl3): δ = 9.77 (s, 1 Ha), 9.74 (t, J = 1.6 Hz, 1 Hb), 5.48 (s, 1 Ha, 1 Hb), 4.07-4.02 (m, 2 Ha, 2 Hb), 2.54-2.50 (m, 2 Ha), 2.48-2.44 (m, 2 Hb), 1.88-1.45 (m, 10 Ha, 10 Hb). ¹³C NMR (100 MHz, CDCl3): δ = 201.9, 102.1, 101.4, 78.8, 78.1, 43.2, 34.3, 30.5, 29.8, 28.0, 27.3, 23.9, 19.2, 17.7. ESI-LRMS: m/z = 257 [M + MeOH + Na]+.