Synlett 2010(20): 3092-3098  
DOI: 10.1055/s-0030-1259064
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Tri- and Diaryloxybenzenes by Rhodium-Catalyzed Complete Intermolecular [2+2+2] Cycloaddition of Aryl Ethynyl Ethers

Yoshiyuki Komine, Yuta Miyauchi, Masayuki Kobayashi, Ken Tanaka*
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Fax: +81(42)3887037; e-Mail: tanaka-k@cc.tuat.ac.jp;
Further Information

Publication History

Received 5 October 2010
Publication Date:
24 November 2010 (online)

Abstract

We have established that a cationic rhodium(I)-H8-­BINAP complex catalyzes the complete intermolecular homo-[2+2+2] cycloaddition of aryl ethynyl ethers and cross-[2+2+2] cycloaddition of aryl ethynyl ethers with electron-deficient monoalkynes, leading to tri- and diaryloxybenzenes, respectively, at room temperature.

    References and Notes

  • For recent reviews of the transition-metal-catalyzed [2+2+2] cycloaddition reactions, see:
  • 1a Galan BR. Rovis T. Angew. Chem. Int. Ed.  2009,  48:  2830 
  • 1b Tanaka K. Chem. Asian J.  2009,  4:  508 
  • 1c Varela JA. Saá C. Synlett  2008,  2571 
  • 1d Shibata T. Tsuchikama K. Org. Biomol. Chem.  2008,  1317 
  • 1e Heller B. Hapke M. Chem. Soc. Rev.  2007,  36:  1085 
  • 1f Agenet N. Buisine O. Slowinski F. Gandon V. Aubert C. Malacria M. Organic Reactions   Vol. 68:  RajanBabu TV. John Wiley and Sons; Hoboken: 2007.  p.1 
  • 1g Chopade PR. Louie J. Adv. Synth. Catal.  2006,  348:  2307 
  • 1h Gandon V. Aubert C. Malacria M. Chem. Commun.  2006,  2209 
  • 1i Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem.  2005,  4741 
  • 1j Gandon V. Aubert C. Malacria M. Curr. Org. Chem.  2005,  9:  1699 
  • 1k Yamamoto Y. Curr. Org. Chem.  2005,  9:  503 
  • 2 Semmelhack MF. Park J. Organometallics  1986,  5:  2550 
  • 3 Suzuki D. Urabe H. Sato F. J. Am. Chem. Soc.  2001,  123:  7925 
  • 4 Takahashi T. inventors; JP  11263737.  ; Chem. Abstr. 1999, 131, 228541
  • For the transition-metal-mediated intermolecular [4+2]-benzannulation reactions using alkynyl ethers, see:
  • 5a Darbasie ND. Schnatter WFK. Warner KF. Manolache N. Tetrahedron Lett.  2006,  47:  963 
  • 5b Dudley GB. Takaki KS. Cha DD. Danheiser RL. Org. Lett.  2000,  2:  3407 
  • 5c Gevorgyan V. Quan LG. Yamamoto Y. J. Org. Chem.  2000,  65:  568 
  • 5d Morris KG. Saberi SP. Thomas SE. J. Chem. Soc., Chem. Commun.  1993,  209 
  • 5e Danheiser RL. Brisbois RG. Kowalczyk JJ. Miller RF. J. Am. Chem. Soc.  1990,  112:  3093 
  • 5f Danheiser RL. Gee SK. Perez JJ. J. Am. Chem. Soc.  1986,  108:  806 
  • For the nickel-catalyzed complete intermolecular cross-[2+2+2] cycloaddition of two ethyl ethynyl ethers and carbon dioxide, see:
  • 6a Tsuda T. Kunisada K. Nagahama N. Morikawa S. Saegusa T. Synth. Commun.  1989,  19:  1575 
  • 6b For the rhodium-catalyzed complete intermolecular cross-[2+2+2] cycloaddition of two ethyl ethynyl ethers with an isocyanate, see: Oberg KM. Lee EE. Rovis T. Tetrahedron  2009,  65:  5056 
  • 7 For the nickel-catalyzed complete intermolecular cross-[3+2+2] cycloaddition of ethyl cyclopropylideneacetate, an internal 1,3-diyne, and an alkynyl ether, see: Yamasaki R. Terashima N. Sotome I. Komagawa S. Saito S. J. Org. Chem.  2010,  75:  480 
  • 8 Komine Y. Tanaka K. Org. Lett.  2010,  12:  1312 
  • 9 For the rhodium-catalyzed [2+2+2] cycloadditions of phenol-linked 1,6-diynes with alkynes and nitriles, leading to substituted dibenzofurans and azadibenzofurans, see: Komine Y. Kamisawa A. Tanaka K. Org. Lett.  2009,  11:  2361 
  • Tri- and diaryloxybenzenes are useful compounds in material sciences. For selected recent examples, see:
  • 10a Pei S. Chen X. Jiang Z. Peng W. J. Appl. Polym. Sci.  2010,  117:  2069 
  • 10b Yamanaka M. Fujii H. J. Org. Chem.  2009,  74:  5390 
  • 10c Chen X. Zhang Y. Liu B. Zhang J. Wang H. Zhang W. Chen Q. Pei S. Jiang Z. J. Mater. Chem.  2008,  18:  5019 
  • 10d Rao X. Dang G. Zhou H. Yang W. Cui G. Chen C. Yokota R. J. Polym. Sci., Part A: Polym. Chem.  2007,  45:  4844 
  • 13a Tanaka K. Shirasaka K. Org. Lett.  2003,  5:  4697 
  • 13b Tanaka K. Toyoda K. Wada A. Shirasaka K. Hirano M. Chem. Eur. J.  2005,  11:  1145 
  • 14 For our account of the cationic rhodium(I)-biaryl bisphosphine-complex-catalyzed [2+2+2]-cycloaddition reactions, see: Tanaka K. Synlett  2007,  1977 
  • For the rhodium(I)-catalyzed [2+2+2] cycloaddition of diynes with internal alkynyl ethers, see:
  • 16a Alayrac C. Schollmeyer D. Witulski B. Chem. Commun.  2009,  1464 
  • 16b Clayden J. Moran WJ. Org. Biomol. Chem.  2007,  5:  1028 
11

Aryl ethynyl ethers are stable compounds and can be readily handled and purified without any special precautions. For the synthesis of aryl ethynyl ethers 1a-e, see ref. 8.

12

Typical Procedure (Table 2, Entry 1) Under an argon atmosphere, H8-BINAP (6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1 mg, 0.010 mmol) were dissolved in CH2Cl2 (1.0 mL), and the mixture was stirred for 5 min. H2 was introduced to the resulting solution in a Schlenk tube. After stirring at r.t. for 0.5 h, the resulting mixture was concentrated to dryness. To a CH2Cl2 (0.5 mL) solution of the residue was added a CH2Cl2 (1.5 mL) solution of 1a (67.3 mg, 0.400 mmol). The mixture was stirred at r.t. for 1 h. The resulting mixture was concentrated and purified on a preparative TLC (n-hexane-toluene = 4:1), which furnished 2a (34.2 mg, 0.0678 mmol, 51% yield) and 3a (23.0 mg, 0.0456 mmol, 34% yield).
Compound 2a: ¹H NMR (300 MHz, CDCl3): δ = 7.81-7.76 (m, 6 H), 7.72-7.70 (m, 3 H), 7.47-7.35 (m, 9 H), 7.27-7.23 (m, 3 H), 6.53 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 159.6, 153.9, 134.2, 130.4, 130.0, 127.7, 127.2, 126.6, 125.0, 119.9, 115.0, 103.9. ESI-HRMS: m/z calcd for C36H24O3Na [M + Na]+: 527.1618; found: 527.1635.
Compound 3a: ¹H NMR (300 MHz, CDCl3): δ = 7.84-7.64 (m, 9 H), 7.45-7.33 (m, 7 H), 7.30-7.13 (m, 6 H), 6.93-6.86 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 155.7, 154.7, 154.6, 154.1, 149.0, 142.9, 134.22, 134.19, 134.10, 130.3, 130.1, 130.0, 129.9, 129.7, 129.6, 127.73, 127.68, 127.66, 127.13, 127.08, 127.00, 126.6, 126.45, 126.43, 124.9, 124.6, 124.4, 123.1, 119.7, 119.1, 118.8, 114.8, 114.1, 113.2, 112.5, 111.7. ESI-HRMS: m/z calcd for C36H24O3Na [M + Na]+: 527.1618; found: 527.1617.
Compound 2b: ¹H NMR (300 MHz, CDCl3): δ = 8.11-8.08 (m, 3 H), 7.84-7.81 (m, 3 H), 7.61-7.58 (m, 3 H), 7.51-7.44 (m, 6 H), 7.38-7.33 (m, 3 H), 7.07-7.05 (m, 3 H), 6.45 (s, 3 H).
Compound 3b: ¹H NMR (300 MHz, CDCl3): δ = 8.21-8.18 (m, 1 H), 8.00-7.97 (m, 1 H), 7.86-7.83 (m, 2 H), 7.74-7.69 (m, 2 H), 7.61-7.58 (m, 1 H), 7.51-7.49 (m, 4 H), 7.40-7.21 (m, 7 H), 7.16-7.14 (m, 1 H), 7.01-6.97 (m, 2 H), 6.92-6.90 (m, 2 H), 6.82-6.78 (m, 1 H).
Compound 2c: ¹H NMR (300 MHz, CDCl3): δ = 7.21-7.12 (m, 6 H), 7.07-7.01 (m, 3 H), 6.95-6.92 (m, 3 H), 6.12 (s, 3 H), 2.20 (s, 9 H).
Compound 3c: ¹H NMR (300 MHz, CDCl3): δ = 7.23-7.18 (m, 1 H), 7.16-6.89 (m, 10 H), 6.81-6.78 (m, 1 H), 6.74-6.72 (m, 1 H), 6.60-6.56 (m, 2 H), 2.24 (s, 3 H), 2.05 (s, 3 H), 1.98 (s, 3 H).
Compound 2d: ¹H NMR (300 MHz, CDCl3): δ = 6.98-6.94 (m, 6 H), 6.88-6.82 (m, 6 H), 6.19 (s, 3 H), 3.78 (s, 9 H).
Compound 3d: ¹H NMR (300 MHz, CDCl3): δ = 6.96-6.80 (m, 13 H), 6.61-6.54 (m, 2 H), 3.78 (s, 3 H), 3.77 (s, 6 H).
Compound 2e: ¹H NMR (300 MHz, CDCl3): δ = 7.62-7.60 (m, 6 H), 7.12-7.10 (m, 6 H), 6.51 (s, 3 H).
Compound 3e: ¹H NMR (300 MHz, CDCl3): δ = 7.64-7.61 (m, 2 H), 7.54-7.51 (m, 4 H), 7.23-7.20 (m, 1 H), 7.13-7.10 (m, 2 H), 6.95-6.90 (m, 6 H).

15

Typical Procedure (Table 4, Entry 1) Under an argon atmosphere, H8-BINAP (6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1 mg, 0.010 mmol) were dissolved in CH2Cl2 (1.0 mL), and the mixture was stirred for 5 min. H2 was introduced to the resulting solution in a Schlenk tube. After stirring at r.t. for 0.5 h, the resulting mixture was concentrated to dryness. To a CH2Cl2 (0.5 mL) solution of the residue and 4a (44.9 mg, 0.400 mmol) was added a CH2Cl2 (1.5 mL) solution of 1a (67.3 mg, 0.400 mmol). The mixture was stirred at r.t. for 1 h. The resulting mixture was concentrated and purified on a preparative TLC (n-hexane-EtOAc = 15:1), which furnished 5aa (53.9 mg, 0.120 mmol, 60% yield) and 6aa (18.5 mg, 0.0412 mmol, 21% yield).
Compound 5aa: ¹H NMR (300 MHz, CDCl3): δ = 7.81-7.77 (m, 4 H), 7.72-7.69 (m, 2 H), 7.47-7.37 (m, 4 H), 7.34-7.33 (m, 2 H), 7.27-7.23 (m, 1 H), 7.21-7.18 (m, 1 H), 6.66 (d, J = 1.8 Hz, 1 H), 6.56 (d, J = 1.8 Hz, 1 H), 4.28 (q, J = 7.1 Hz, 2 H), 2.38 (s, 3 H), 1.20 (t, J = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1, 158.92, 158.91, 155.6, 154.7, 153.8, 139.40, 139.38, 134.1, 130.4, 130.1, 130.0, 129.8, 127.7, 127.6, 127.1, 126.6, 126.5, 125.0, 124.7, 121.6, 119.8, 119.4, 115.3, 114.9, 113.9, 107.6, 61.2, 19.8, 14.1. ESI-HRMS: m/z calcd for C30H24O4Na [M + Na]+: 471.1567; found: 471.1575.
Compound 6aa: ¹H NMR (300 MHz, CDCl3): δ = 7.81-7.77 (m, 4 H), 7.70-7.65 (m, 2 H), 7.47-7.34 (m, 5 H), 7.30 (d, J = 2.4 Hz, 1 H), 7.24-7.20 (m, 2 H), 7.13-7.12 (m, 1 H), 6.90 (d, J = 2.4 Hz, 1 H), 4.36 (q, J = 7.1 Hz, 2 H), 2.48 (s, 3 H), 1.37 (t, J = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1, 155.9, 155.2, 154.5, 134.23, 134.20, 133.6, 130.2, 130.08, 130.04, 129.9, 127.7, 127.1, 127.0, 126.8, 126.6, 124.8, 124.6, 119.5, 118.8, 116.5, 114.6, 113.9, 112.1, 61.2, 14.2, 12.9. ESI-HRMS: m/z calcd for C30H24O4Na [M + Na]+: 471.1567; found: 471.1567.
Compound 5ab: ¹H NMR (300 MHz, CDCl3): δ = 7.80-7.77 (m, 4 H), 7.71-7.68 (m, 2 H), 7.46-7.32 (m, 6 H), 7.27-7.17 (m, 2 H), 6.69 (d, J = 1.8 Hz, 1 H), 6.54 (d, J = 1.8 Hz, 1 H), 4.29 (q, J = 7.1 Hz, 2 H), 2.66 (t, J = 7.4 Hz, 2 H), 1.65-1.55 (m, 2 H), 1.43-1.30 (m, 2 H), 1.22 (t, J = 7.1 Hz, 3 H), 0.91 (t, J = 7.4 Hz, 3 H).
Compound 6ab: ¹H NMR (300 MHz, CDCl3): δ = 7.83-7.78 (m, 4 H), 7.70-7.68 (m, 2 H), 7.47-7.35 (m, 4 H), 7.31-7.30 (m, 2 H), 7.25-7.19 (m, 3 H), 6.84 (d, J = 2.7 Hz, 1 H), 4.36 (q, J = 7.2 Hz, 2 H), 2.94 (t, J = 7.5 Hz, 2 H), 1.61-1.51 (m, 2 H), 1.47-1.35 (m, 5 H), 0.90 (t, J = 7.5 Hz, 3 H).
Compound 5ac: ¹H NMR (300 MHz, CDCl3): δ = 7.87-7.61 (m, 6 H), 7.54-7.13 (m, 13 H), 6.81 (d, J = 2.4 Hz, 1 H), 6.70 (d, J = 2.4 Hz, 1 H), 4.06 (q, J = 7.2 Hz, 2 H), 0.93 (t, J = 7.2 Hz, 3 H). An aromatic proton of the tetrasubstituted benzene moiety of minor isomer 6ac: 6.93 (d, J = 2.4 Hz, 1 H). Ethoxy protons of minor isomer 6ac: 3.99 (q, J = 7.2 Hz, 2H), 0.89 (t, J = 7.2 Hz, 3 H).
Compound 5ba: ¹H NMR (300 MHz, CDCl3): δ = 8.23-8.20 (m, 1 H), 8.02-7.99 (m, 1 H), 7.84-7.81 (m, 2 H), 7.62-7.57 (m, 2 H), 7.52-7.41 (m, 4 H), 7.37-7.32 (m, 2 H), 7.01-6.96 (m, 2 H), 6.53 (d, J = 2.4 Hz, 1 H), 6.45 (d, J = 2.4 Hz, 1 H), 4.22 (q, J = 7.1 Hz, 2 H), 2.34 (s, 3 H), 1.14 (t, J = 7.1 Hz, 3 H).
Compound 5ca: ¹H NMR (300 MHz, CDCl3): δ = 7.24-6.99 (m, 6 H), 6.95-6.85 (m, 2 H), 6.31 (d, J = 2.1 Hz, 1 H), 6.17 (d, J = 2.1 Hz, 1 H), 4.30 (q, J = 7.2 Hz, 2 H), 2.30 (s, 3 H), 2.23 (s, 3 H), 2.15 (s, 3 H), 1.27 (t, J = 7.2 Hz, 3 H).
Compound 5da: ¹H NMR (300 MHz, CDCl3): δ = 6.98-6.90 (m, 4 H), 6.88-6.83 (m, 4 H), 6.39 (d, J = 2.0 Hz, 1 H), 6.29 (d, J = 2.0 Hz, 1 H), 4.32 (q, J = 7.1 Hz, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.30 (s, 3 H), 1.29 (t, J = 7.1 Hz, 3 H).
Compound 6da: ¹H NMR (300 MHz, CDCl3): δ = 7.11 (d, J = 2.7 Hz, 1 H), 6.94-6.90 (m, 2 H), 6.87-6.83 (m, 6 H), 6.61 (d, J = 2.7 Hz, 1 H), 4.33 (q, J = 7.1 Hz, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.42 (s, 3 H), 1.36 (t, J = 7.1 Hz, 3 H).
Compound 5ea: ¹H NMR (300 MHz, CDCl3): δ = 7.61-7.56 (m, 4 H), 7.08-7.03 (m, 4 H), 6.72 (d, J = 2.1 Hz, 1 H), 6.52 (d, J = 2.1 Hz, 1 H), 4.26 (q, J = 7.2 Hz, 2 H), 2.39 (s, 3 H), 1.18 (t, J = 7.2 Hz, 3 H).
Compound 6ea: ¹H NMR (300 MHz, CDCl3): δ = 7.60-7.56 (m, 4 H), 7.43 (d, J = 2.4 Hz, 1 H), 7.06-7.03 (m, 2 H), 6.97-6.94 (m, 2 H), 6.84 (d, J = 2.4 Hz, 1 H), 4.38 (q, J = 7.2 Hz, 2 H), 2.41 (s, 3 H), 1.39 (t, J = 7.2 Hz, 3 H).

17

Compound 10: ¹H NMR (300 MHz, CDCl3): δ = 7.89-7.72 (m, 4 H), 7.72-7.63 (m, 1 H), 7.49-7.37 (m, 3 H), 7.37-7.29 (m, 2 H), 7.22-7.17 (m, 1 H), 7.16-7.10 (m, 1 H), 6.98-6.91 (m, 1 H), 6.87-6.81 (m, 1 H), 4.60 (s, 2 H), 4.58 (s, 2 H), 2.42 (s, 3 H).