Subscribe to RSS
DOI: 10.1055/s-0030-1258585
Hypervalent Iodine(III) Mediated Decarboxylative Halogenation of Indolecarboxylic Acids for the Synthesis of Haloindole Derivatives
Publication History
Publication Date:
23 September 2010 (online)
Abstract
The treatment of 1-methylindole-2,3-dicarboxylic acid with hypervalent iodine(III) reagent, phenyliodine diacetate (PIDA), in the presence of lithium bromide gave 1-methyl-3,3-dibromooxindole. However, the reaction of 1-(phenylsulfonyl)indole-2,3-dicarboxylic acid with PIDA in the presence of lithium bromide afforded 2,3-dibromo-1-(phenylsulfonyl)indole. In a similar manner, the 2,3-dichloro- and 2,3-diiodo-indole derivatives were obtained by the reaction of the indole-2,3-dicarboxylic acids with PIDA in the presence of lithium chloride and iodide.
Key words
indolecarboxylic acid - decarboxylation - bromination - chlorination - iodation
- 1
Kürti L.Czakó B. Strategic Applications of Named Reactions in Organic Synthesis, Background and Detailed Mechanism Elsevier Academic Press; San Diego: 2005. p.218 - For reviews, see:
-
2a
Moriarty RM. J. Org. Chem. 2005, 70: 2893 -
2b
Togo H.Katohgi M. Synlett 2001, 565 - 3
Camps P.Lukach AE.Pujol X.Vázquez S. Tetrahedron 2000, 56: 2703 - 4
Koo B.-S.Kim E.-H.Lee K.-J. Synth. Commun. 2002, 32: 2275 - For reviews, see:
-
5a
Gribble GW. Prog. Chem. Org. Nat. Prod. 2010, 91: 1 -
5b
Gribble GW. Environ. Sci. Pollut. Res. 2000, 7: 37 -
5c
Gribble GW. Chem. Soc. Rev. 1999, 28: 335 -
5d
Gribble GW. Acc. Chem. Res. 1998, 31: 141 -
5e
Alvarez M.Salas M.Joule JA. Heterocycles 1991, 32: 1391 - 6
Maruya KA. Chemosphere 2003, 52: 409 -
7a
Vairappan CS.Kawamoto T.Miwa H.Suzuki M. Planta Med. 2004, 70: 1087 -
7b
Carter GT.Rinehart KL.Li LH.Kuentzel SL.Connor JL. Tetrahedron Lett. 1978, 4479 -
8a
Hodder AR.Capon RJ. J. Nat. Prod. 1991, 54: 1661 -
8b
Norton RS.Wells RJ. J. Am. Chem. Soc. 1982, 104: 3628 - 9
Brennan MR.Erickson KL. Tetrahedron Lett. 1978, 1637 - 10
Putey A.Popowycz F.Joseph B. Synlett 2007, 419 - 11
Umemoto H.Umemoto M.Ohta C.Dohshita M.Tanaka H.Hattori S.Hamamoto H.Miki Y. Heterocycles 2009, 78: 2845 - 12
Wirth T. Hypervalent Iodine Chemistry, Modern Developments in Organic Synthesis Springer; Berlin/Heidelberg: 2003. - 13
Miki Y.Hachiken H.Yoshikawa I. Heterocycles 1997, 45: 1143 - 14
Braddock DC.Cansell G.Hermitage SA. Synlett 2004, 461 - 15
Conway SC.Gribble GW. Heterocycles 1992, 34: 2095 -
16a
Liu Y.Gribble GW. Tetrahedron Lett. 2001, 42: 2949 -
16b
Baiocchi L.Giannangeli M. J. Heterocycl. Chem. 1988, 25: 1905 - 17
Liu Y.Gribble GW. Tetrahedron Lett. 2002, 43: 7135 -
18a
Janda M.Srogl J.Holy P. Coll. Czech. Commun. 1981, 46: 3278 -
18b
Moriconi EJ.Murray JJ. J. Org. Chem. 1964, 29: 3577 -
19a
Bergman J.Venemalm L. J. Org. Chem. 1992, 57: 2495 -
19b
Saulnier MG.Gribble GW. J. Org. Chem. 1982, 47: 757 - 20
Ezquerra J.Pedregal C.Lamas C.Barluenga J.Pérez M.Garcia-Martín MA.González JM. J. Org. Chem. 1996, 61: 5804 -
21a
Kellie AE.O’Sullivan DG.Sadler PW. J. Chem. Soc. 1956, 3809 -
21b
Hantzsch A. Ber. Dtsch. Chem. Ges. 1921, 54: 1221
References and Notes
Typical Procedure
for the Decarboxylative Halogenation of Indole-2,3-dicarboxylic
Acid(1) with PIDA in the Presence of Lithium Halide
To
a mixture of PIDA and lithium halide in THF (10 mL) was added indolecarboxylic
acids 1, 6, 7 (1 mmol) at r.t., and then the reaction
mixture was stirred. H2O was added to the reaction mixture,
and the mixture was extracted with CH2Cl2.
The combined extracts were washed with 2-3% Na2S2O3 solution,
then H2O, and dried over Na2SO4.
The extracts were concentrated under reduced pressure to give a solid,
which was purified by column chromatography on silica gel to afford
the 3-halogenoindole-2-carboxylic acids(2),
2,3-dihalogenoindoles 3, 8,
and 3,3-dihalogeno-oxindoles 4, 9.
1-Phenylsulfonyl-3-bromoindole-2-carboxylic
Acid (2a)
Mp 124-125 ˚C. IR (mull): ν = 2856,
2585, 1697 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 7.24-7.36
(3 H, m), 7.50-7.68 (3 H, m), 7.91 (1 H, dd, J = 8.0, 1.5
Hz), 8.25-8.32 (2 H, m). HRMS (EI): m/z calcd
for C15H11NSO4Br2S: 379.9592;
found: 379.9602.
1-Phenylsulfonyl-2,3-dibromoindole
(3a)
Mp 143 ˚C (lit.¹5 mp
141-143 ˚C). ¹H NMR (400 MHz, CDCl3): δ = 7.22-7.40
(5 H, m), 7.46-7.54 (1 H, m), 7.78-7.84 (2 H,
m), 8.19-8.25 (1 H, m).
3-Bromo-1-methylindole-2-carboxylic
Acid (2b)
Mp 184-186 ˚C [lit.¹7 mp
180 ˚C (dec)]. IR (KBr): ν = 1671 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 3.99
(3 H, s, CH3), 7.22 (1 H, t, J = 8.0
Hz, H-5 or H-6), 7.40 (1 H, t, J = 8.0
Hz, H-6 or H-5), 7.54 (1 H, d, J = 8.0
Hz, H-4 or H-7), 7.62 (1 H, d, J = 8.0
Hz, H-7 or H-4).
3,3-Dibromo-1-methyloxindole
(4b)
Mp 202-204 ˚C (lit.¹8 mp
204-205 ˚C). IR (CHCl3): ν = 1737
cm-¹. ¹H NMR (400
MHz, DMSO-d
6): δ = 3.26
(3 H, s, CH3), 6.86 (1 H, d, J = 8.0
Hz, H-4 or H-7), 7.17 (1 H, dt, J = 8.0,
1.5 Hz, H-5 or H-6), 7.34 (1 H, dt, J = 8.0,
1.5 Hz, H-6 or H-5), 7.62 (1 H, dd, J = 8.0,
1.5 Hz, H-7 or H-4).
¹³C
NMR (100 MHz, DMSO-d
6): δ = 169.16,
139.64, 131.87, 130.37, 125.38, 124.05, 110.08, 45.28, 27.03. HRMS
(EI): m/z calcd for C9H7NOBr2:
302.8895; found: 302.8883.
1-Phenylsulfonyl-2,3-dichloroindole
(8a)
Mp 122 ˚C. ¹H NMR
(400 MHz, CDCl3): δ = 7.30-7.63
(6 H, m), 7.84-7.92 (2 H, m), 8.28 (1 H, br d, J = 8.0 Hz,
H-7 or H-4). ¹³C NMR (100 MHz, DMSO-d
6): δ = 137.59, 134.70,
134.40, 129.30, 126.94, 126.54, 126.14, 124.57, 121.24, 118.15,
114.98, 113.78. HRMS (EI): m/z calcd
for C14H9NO2Cl2S: 324.9677;
found: 324.9737.
1-Phenylsulfonyl-2,3-diiodoindole
(8b)
Mp 165-167 ˚C (lit.¹9 mp
166-167 ˚C). ¹H NMR (400 MHz, CDCl3): δ = 7.25-7.60
(6 H, m), 7.90 (2 H, br d, J = 8.0
Hz), 8.28 (1 H, br d, J = 8.0
Hz, H-7).
2,3-Diiodo-1-methylindole
(8c)
Mp 76-77 ˚C (lit.²0 mp
76-78 ˚C). ¹H NMR (400 MHz, CDCl3): δ = 3.89
(3 H, s, CH3), 7.10-7.42 (4 H, m). ¹³C NMR
(100 MHz, DMSO-d
6): δ = 138.11,
131.15, 122.71, 120.80, 120.50, 111.06, 99.78, 71.72, 36.09. HRMS
(EI):
m/z calcd for
C9H7NI2: 382.8668; found: 382.8671.
3,3-Dichloro-1-methyloxindole (9)
Mp
144-147 ˚C (lit.²¹ 143 ˚C).
IR (KBr): ν = 1740 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 3.25 (3 H, s,
CH3), 6.85 (1 H, d, J = 8.0
Hz, H-4 or H-7), 7.17 (1 H, t, J = 8.0
Hz, H-5 or H-6), 7.39 (1 H, t, J = 8.0,
1.5 Hz, H-6 or H-5), 7.61 (1 H, d, J = 8.0
Hz, H-7 or H-4). ¹³C NMR (100 MHz,
CDCl3): δ = 168.80, 140.58, 131.85,
129.16, 125.13, 124.70, 124.14, 109.08, 26.98.