Synthesis 2010(24): 4177-4187  
DOI: 10.1055/s-0030-1258286
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Towards a Flexible Strategy for the Synthesis of Enantiomerically Pure [2.2]Paracyclophane Derivatives: The Chemistry of 4-Tolylsulfinyl[2.2]paracyclophane

Rakesh Parmara, Martyn P. Colesa, Peter B. Hitchcocka, Gareth J. Rowlands*a,b
a Chemistry Division, Department of Chemistry and Biochemistry, University of Sussex, Falmer, BN1 9QJ, UK
b Institute of Fundamental Sciences - Chemistry, Massey University, Private Bag 11 222, Palmerston North, New Zealand
Fax: +64(6)3505682; e-Mail: g.j.rowlands@massey.ac.nz;
Further Information

Publication History

Received 6 August 2010
Publication Date:
05 October 2010 (online)

Abstract

The use of enantiomerically enriched 4-tolylsulfinyl[2.2]paracyclophane as a precursor to a variety of mono- and di­substituted [2.2]paracyclophane derivatives is described. The goal of our research is to develop a single general precursor that permits the synthesis of the most common [2.2]paracyclophane substitution patterns. The chemistry of two diastereoisomers of 4-tolylsulfinyl[2.2]paracyclophane has been explored and it facilitates the synthesis of enantiomerically enriched 4-substituted and 4,13-disubstituted [2.2]paracyclophanes. Directed lithiations result in an unusual cyclisation reaction. Whilst the tolyl group cannot realise our goal, the chemistry outlined acts as a successful ‘proof of concept­.’

    References

  • 1 Brown CJ. Farthing AC. Nature  1949,  164:  915 
  • 2a Cram DJ. Cram JM. Acc. Chem. Res.  1971,  4:  204 
  • 2b Cram DJ. Steinberg H. J. Am. Chem. Soc.  1951,  73:  5691 
  • 3a de Meijere A. Konig B. Synlett  1997,  1221 
  • 3b Bräse S. In Asymmetric Synthesis - The Essentials   Christmann M. Bräse S. Wiley-VCH; Weinheim: 2007.  p.67 
  • 3c Modern Cyclophane Chemistry   Gleiter R. Hopf H. Wiley-VCH; Weinheim: 2004. 
  • 3d Cyclophane Chemistry   Vögtle F. Wiley; Chichester: 1993. 
  • 3e Classics in Hydrocarbon Chemistry   Hopf H. Wiley-VCH; Weinheim: 2000. 
  • 3f Aly AA. Brown AB. Tetrahedron  2009,  65:  8055 
  • 3g Vu TT. Badre S. Dumas-Verdes C. Vachon JJ. Julien C. Audebert P. Senotrusova EY. Schmidt EY. Trofimov BA. Pansu RB. Clavier G. Meallet-Renault R. J. Phys. Chem. C  2009,  113:  11844 
  • 3h Bazan GC. J. Org. Chem.  2007,  72:  8615 
  • 3i Kattnig DR. Mladenova B. Grampp G. Kaiser C. Heckmann A. Lambert C. J. Phys. Chem. C  2009,  113:  2983 
  • 3j Morisaki Y. Murakami T. Sawamura T. Chujo Y. Macromolecules  2009,  42:  3656 
  • 3k Schlotter K. Boeckler F. Hubner H. Gmeiner P. J. Med. Chem.  2006,  49:  3628 
  • 3l Bondarenko L. Hentschel S. Greiving H. Grunenberg J. Hopf H. Dix I. Jones PG. Ernst L. Chem. Eur. J.  2007,  13:  3950 
  • 3m Furo T. Mori T. Wada T. Inoue Y. J. Am. Chem. Soc.  2005,  127:  8242 
  • 4 Cram DJ. Allinger NL. J. Am. Chem. Soc.  1955,  77:  6289 
  • 5 Gibson SE. Knight JD. Org. Biomol. Chem.  2003,  1:  1256 
  • 6 Rozenberg V. Sergeeva E. Hopf H. In Modern Cyclophane Chemistry   Gleiter R. Hopf H. Wiley-VCH; Weinheim: 2004.  p.435 
  • 8a Arrayas RG. Adrio J. Carretero JC. Angew. Chem. Int. Ed.  2006,  45:  7674 
  • 8b Hou XL. You SL. Tu T. Deng WP. Wu XW. Li M. Yuan K. Zhang TZ. Dai LX. Top. Catal.  2005,  35:  87 
  • 8c Atkinson RCJ. Gibson VC. Long NJ. Chem. Soc. Rev.  2004,  33:  313 
  • 8d Gibson SE. Ibrahim H. Chem. Commun.  2002,  2465 
  • 8e Richards CJ. Locke AJ. Tetrahedron: Asymmetry  1998,  9:  2377 
  • 8f Ferber B. Kagan HB. Adv. Synth. Catal.  2007,  349:  493 
  • 9 Hitchcock PB. Parmar R. Rowlands GJ. Chem. Commun.  2005,  4219 
  • 10 Rowlands GJ. Org. Biomol. Chem.  2008,  6:  1527 
  • 11 Zhang TZ. Dai LX. Hou XL. Tetrahedron: Asymmetry  2007,  18:  251 
  • 12 Banfi S. Manfredi A. Montanari F. Pozzi G. Quici S. J. Mol. Catal. A: Chem.  1996,  113:  77 
  • 13 Pamperin D. Hopf H. Syldatk C. Pietzsch M. Tetrahedron: Asymmetry  1997,  8:  319 
  • 14 Rozenberg V. Dubrovina N. Sergeeva E. Antonov D. Belokon Y. Tetrahedron: Asymmetry  1998,  9:  653 
  • 15 Rozenberg V. Danilova T. Sergeeva E. Vorontsov E. Starikova Z. Korlyukov A. Hopf H. Eur. J. Org. Chem.  2002,  468 
  • 16a Cipiciani A. Bellezza F. Fringuelli F. Silvestrini MG. Tetrahedron: Asymmetry  2001,  12:  2277 
  • 16b Pamperin D. Ohse B. Hopf H. Pietzsch M. J. Mol. Catal. B: Enzym.  1998,  5:  317 
  • 17 Cipiciani A. Fringuelli F. Mancini V. Piermatti O. Pizzo F. Ruzziconi R. J. Org. Chem.  1997,  62:  3744 
  • 18 Tanji S. Ohno A. Sato I. Soai K. Org. Lett.  2001,  3:  287 
  • 19 Minuti L. Taticchi A. Marrocchi A. Tetrahedron: Asymmetry  2000,  11:  4221 
  • 20 Kreis M. Friedmann CJ. Bräse S. Chem. Eur. J.  2005,  11:  7387 
  • 21 Rossen K. Pye PJ. Maliakal A. Volante RP. J. Org. Chem.  1997,  62:  6462 
  • 22 Reich HJ. Yelm KE. J. Org. Chem.  1991,  56:  5672 
  • 23a Bolm C. Whelligan DK. Adv. Synth. Catal.  2006,  348:  2093 
  • 23b Whelligan DK. Bolm C. J. Org. Chem.  2006,  71:  4609 
  • 23c Wu XW. Zhang TZ. Yuan K. Hou XL. Tetrahedron: Asymmetry  2004,  15:  2357 
  • 23d Bolm C. Focken T. Raabe G. Tetrahedron: Asymmetry  2003,  14:  1733 
  • 23e Wu XW. Yuan K. Sun W. Zhang MJ. Hou XL. Tetrahedron: Asymmetry  2003,  14:  107 
  • 23f Wu XW. Hou XL. Dai LX. Tao J. Cao BX. Sun J. Tetrahedron: Asymmetry  2001,  12:  529 
  • 24 Hou XL. Wu XW. Dai LX. Cao BX. Sun J. Chem. Commun.  2000,  1195 
  • 25 Reich HJ. Cram DJ. J. Am. Chem. Soc.  1969,  91:  3534 
  • 26a

    Supporting Information contains X-ray crytallographic data, full experimental, and figures showing select NMR data.

  • 26b

    CCDC-276960-276961 and CCDC-772176-772181 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.

  • 27 Satoh T. Matsue R. Fujii T. Morikawa S. Tetrahedron  2001,  57:  3891 
  • 28a Bhalla R. Boxwell CJ. Duckett SB. Dyson PJ. Humphrey DG. Steed JW. Suman P. Organometallics  2002,  21:  924 
  • 28b Zhang T.-Z. Dai L.-X. Hou X.-L. Tetrahedron: Asymmetry  2007,  18:  1990 
  • 28c Zhang T.-Z. Dai L.-X. Hou X.-L. Tetrahedron: Asymmetry  2007,  18:  251 
  • 29 Cram DJ. Hefelfinger DG. J. Am. Chem. Soc.  1971,  93:  4754 
  • 30 Hitchcock PB. Rowlands GJ. Seacome RJ. Org. Biomol. Chem.  2005,  3:  3873 
  • 31 Hopf H. In Modern Cyclophane Chemistry   Gleiter R. Hopf H. Wiley-VCH; Weinheim: 2004.  p.189 
  • 32 Reich HJ. Cram DJ. J. Am. Chem. Soc.  1969,  91:  3505 
  • 34 Mancheno OG. Priego J. Cabrera S. Arrayas RG. Llamas T. Carretero JC. J. Org. Chem.  2003,  68:  3679 
  • 35 Inoue A. Kitagawa K. Shinokubo H. Oshima K. J. Org. Chem.  2001,  66:  4333 
  • 36a Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed.  2004,  43:  2206 
  • 36b Quesnelle C. Iihama T. Aubert T. Perrier H. Snieckus V. Tetrahedron Lett.  1992,  33:  2625 
  • 36c Snieckus V. Chem. Rev.  1990,  90:  879 
  • 37a García Ruano JL. Carreño MC. Toledo MA. Aguirre JM. Aranda MT. Fischer J. Angew. Chem. Int. Ed.  2000,  39:  2736 
  • 37b García Ruano JL. Aleman J. Parra A. J. Am. Chem. Soc.  2005,  127:  13048 
  • 37c García Ruano JL. Aranda MT. Aguirre JM. Tetrahedron  2004,  60:  5383 
  • 37d García Ruano JL. Aleman J. Soriano JF. Org. Lett.  2003,  5:  677 
  • 38 Pelter A. Mootoo B. Maxwell A. Reid A. Tetrahedron Lett.  2001,  42:  8391 
  • 39 Bolm C. Wenz K. Raabe G. J. Organomet. Chem.  2002,  662:  23 
  • 40 Focken T. Hopf H. Snieckus V. Dix I. Jones PG. Eur. J. Org. Chem.  2001,  2221 
  • 41 Brink M. Synthesis  1975,  807 
  • 42a Cram DJ. Allinger NL. J. Am. Chem. Soc.  1955,  77:  6289 
  • 42b Duan W. Ma Y. Xia H. Liu X. Ma Q. Sun J. J. Org. Chem.  2008,  73:  4330 
  • 43 Nugent MJ. Weigang OE. J. Am. Chem. Soc.  1969,  91:  4556 
  • 44 Hoffman PH. Ong EC. Weigang OE. Nugent MJ. J. Am. Chem. Soc.  2002,  96:  2620 
7

This argument was originally stated in reference 5. Chemists that have worked with [2.2]paracyclophane might argue that the greatest impediment to advancing this field is the mercurial nature of these molecules that can hinder even the most simple-looking syntheses.

33

The crystal appears to contain the tribromo product co-crystallised with the dibromo product in a 2:1 ratio. There are two independent molecules with different conforma­-tions. In both the occupancy of the Br(3) atom is 0.67.