Subscribe to RSS
DOI: 10.1055/s-0030-1258286
Towards a Flexible Strategy for the Synthesis of Enantiomerically Pure [2.2]Paracyclophane Derivatives: The Chemistry of 4-Tolylsulfinyl[2.2]paracyclophane
Publication History
Publication Date:
05 October 2010 (online)
Abstract
The use of enantiomerically enriched 4-tolylsulfinyl[2.2]paracyclophane as a precursor to a variety of mono- and disubstituted [2.2]paracyclophane derivatives is described. The goal of our research is to develop a single general precursor that permits the synthesis of the most common [2.2]paracyclophane substitution patterns. The chemistry of two diastereoisomers of 4-tolylsulfinyl[2.2]paracyclophane has been explored and it facilitates the synthesis of enantiomerically enriched 4-substituted and 4,13-disubstituted [2.2]paracyclophanes. Directed lithiations result in an unusual cyclisation reaction. Whilst the tolyl group cannot realise our goal, the chemistry outlined acts as a successful ‘proof of concept.’
Key words
asymmetric synthesis - cyclophanes - sulfoxides - enantiomeric resolution
- Supporting Information for this article is available online:
- Supporting Information
- 1
Brown CJ.Farthing AC. Nature 1949, 164: 915 -
2a
Cram DJ.Cram JM. Acc. Chem. Res. 1971, 4: 204 -
2b
Cram DJ.Steinberg H. J. Am. Chem. Soc. 1951, 73: 5691 -
3a
de Meijere A.Konig B. Synlett 1997, 1221 -
3b
Bräse S. In Asymmetric Synthesis - The EssentialsChristmann M.Bräse S. Wiley-VCH; Weinheim: 2007. p.67 -
3c
Modern
Cyclophane Chemistry
Gleiter R.Hopf H. Wiley-VCH; Weinheim: 2004. -
3d
Cyclophane Chemistry
Vögtle F. Wiley; Chichester: 1993. -
3e
Classics
in Hydrocarbon Chemistry
Hopf H. Wiley-VCH; Weinheim: 2000. -
3f
Aly AA.Brown AB. Tetrahedron 2009, 65: 8055 -
3g
Vu TT.Badre S.Dumas-Verdes C.Vachon JJ.Julien C.Audebert P.Senotrusova EY.Schmidt EY.Trofimov BA.Pansu RB.Clavier G.Meallet-Renault R. J. Phys. Chem. C 2009, 113: 11844 -
3h
Bazan GC. J. Org. Chem. 2007, 72: 8615 -
3i
Kattnig DR.Mladenova B.Grampp G.Kaiser C.Heckmann A.Lambert C. J. Phys. Chem. C 2009, 113: 2983 -
3j
Morisaki Y.Murakami T.Sawamura T.Chujo Y. Macromolecules 2009, 42: 3656 -
3k
Schlotter K.Boeckler F.Hubner H.Gmeiner P. J. Med. Chem. 2006, 49: 3628 -
3l
Bondarenko L.Hentschel S.Greiving H.Grunenberg J.Hopf H.Dix I.Jones PG.Ernst L. Chem. Eur. J. 2007, 13: 3950 -
3m
Furo T.Mori T.Wada T.Inoue Y. J. Am. Chem. Soc. 2005, 127: 8242 - 4
Cram DJ.Allinger NL. J. Am. Chem. Soc. 1955, 77: 6289 - 5
Gibson SE.Knight JD. Org. Biomol. Chem. 2003, 1: 1256 - 6
Rozenberg V.Sergeeva E.Hopf H. In Modern Cyclophane ChemistryGleiter R.Hopf H. Wiley-VCH; Weinheim: 2004. p.435 -
8a
Arrayas RG.Adrio J.Carretero JC. Angew. Chem. Int. Ed. 2006, 45: 7674 -
8b
Hou XL.You SL.Tu T.Deng WP.Wu XW.Li M.Yuan K.Zhang TZ.Dai LX. Top. Catal. 2005, 35: 87 -
8c
Atkinson RCJ.Gibson VC.Long NJ. Chem. Soc. Rev. 2004, 33: 313 -
8d
Gibson SE.Ibrahim H. Chem. Commun. 2002, 2465 -
8e
Richards CJ.Locke AJ. Tetrahedron: Asymmetry 1998, 9: 2377 -
8f
Ferber B.Kagan HB. Adv. Synth. Catal. 2007, 349: 493 - 9
Hitchcock PB.Parmar R.Rowlands GJ. Chem. Commun. 2005, 4219 - 10
Rowlands GJ. Org. Biomol. Chem. 2008, 6: 1527 - 11
Zhang TZ.Dai LX.Hou XL. Tetrahedron: Asymmetry 2007, 18: 251 - 12
Banfi S.Manfredi A.Montanari F.Pozzi G.Quici S. J. Mol. Catal. A: Chem. 1996, 113: 77 - 13
Pamperin D.Hopf H.Syldatk C.Pietzsch M. Tetrahedron: Asymmetry 1997, 8: 319 - 14
Rozenberg V.Dubrovina N.Sergeeva E.Antonov D.Belokon Y. Tetrahedron: Asymmetry 1998, 9: 653 - 15
Rozenberg V.Danilova T.Sergeeva E.Vorontsov E.Starikova Z.Korlyukov A.Hopf H. Eur. J. Org. Chem. 2002, 468 -
16a
Cipiciani A.Bellezza F.Fringuelli F.Silvestrini MG. Tetrahedron: Asymmetry 2001, 12: 2277 -
16b
Pamperin D.Ohse B.Hopf H.Pietzsch M. J. Mol. Catal. B: Enzym. 1998, 5: 317 - 17
Cipiciani A.Fringuelli F.Mancini V.Piermatti O.Pizzo F.Ruzziconi R. J. Org. Chem. 1997, 62: 3744 - 18
Tanji S.Ohno A.Sato I.Soai K. Org. Lett. 2001, 3: 287 - 19
Minuti L.Taticchi A.Marrocchi A. Tetrahedron: Asymmetry 2000, 11: 4221 - 20
Kreis M.Friedmann CJ.Bräse S. Chem. Eur. J. 2005, 11: 7387 - 21
Rossen K.Pye PJ.Maliakal A.Volante RP. J. Org. Chem. 1997, 62: 6462 - 22
Reich HJ.Yelm KE. J. Org. Chem. 1991, 56: 5672 -
23a
Bolm C.Whelligan DK. Adv. Synth. Catal. 2006, 348: 2093 -
23b
Whelligan DK.Bolm C. J. Org. Chem. 2006, 71: 4609 -
23c
Wu XW.Zhang TZ.Yuan K.Hou XL. Tetrahedron: Asymmetry 2004, 15: 2357 -
23d
Bolm C.Focken T.Raabe G. Tetrahedron: Asymmetry 2003, 14: 1733 -
23e
Wu XW.Yuan K.Sun W.Zhang MJ.Hou XL. Tetrahedron: Asymmetry 2003, 14: 107 -
23f
Wu XW.Hou XL.Dai LX.Tao J.Cao BX.Sun J. Tetrahedron: Asymmetry 2001, 12: 529 - 24
Hou XL.Wu XW.Dai LX.Cao BX.Sun J. Chem. Commun. 2000, 1195 - 25
Reich HJ.Cram DJ. J. Am. Chem. Soc. 1969, 91: 3534 -
26a
Supporting Information contains X-ray crytallographic data, full experimental, and figures showing select NMR data.
-
26b
CCDC-276960-276961 and CCDC-772176-772181 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.
- 27
Satoh T.Matsue R.Fujii T.Morikawa S. Tetrahedron 2001, 57: 3891 -
28a
Bhalla R.Boxwell CJ.Duckett SB.Dyson PJ.Humphrey DG.Steed JW.Suman P. Organometallics 2002, 21: 924 -
28b
Zhang T.-Z.Dai L.-X.Hou X.-L. Tetrahedron: Asymmetry 2007, 18: 1990 -
28c
Zhang T.-Z.Dai L.-X.Hou X.-L. Tetrahedron: Asymmetry 2007, 18: 251 - 29
Cram DJ.Hefelfinger DG. J. Am. Chem. Soc. 1971, 93: 4754 - 30
Hitchcock PB.Rowlands GJ.Seacome RJ. Org. Biomol. Chem. 2005, 3: 3873 - 31
Hopf H. In Modern Cyclophane ChemistryGleiter R.Hopf H. Wiley-VCH; Weinheim: 2004. p.189 - 32
Reich HJ.Cram DJ. J. Am. Chem. Soc. 1969, 91: 3505 - 34
Mancheno OG.Priego J.Cabrera S.Arrayas RG.Llamas T.Carretero JC. J. Org. Chem. 2003, 68: 3679 - 35
Inoue A.Kitagawa K.Shinokubo H.Oshima K. J. Org. Chem. 2001, 66: 4333 -
36a
Whisler MC.MacNeil S.Snieckus V.Beak P. Angew. Chem. Int. Ed. 2004, 43: 2206 -
36b
Quesnelle C.Iihama T.Aubert T.Perrier H.Snieckus V. Tetrahedron Lett. 1992, 33: 2625 -
36c
Snieckus V. Chem. Rev. 1990, 90: 879 -
37a
García Ruano JL.Carreño MC.Toledo MA.Aguirre JM.Aranda MT.Fischer J. Angew. Chem. Int. Ed. 2000, 39: 2736 -
37b
García Ruano JL.Aleman J.Parra A. J. Am. Chem. Soc. 2005, 127: 13048 -
37c
García Ruano JL.Aranda MT.Aguirre JM. Tetrahedron 2004, 60: 5383 -
37d
García Ruano JL.Aleman J.Soriano JF. Org. Lett. 2003, 5: 677 - 38
Pelter A.Mootoo B.Maxwell A.Reid A. Tetrahedron Lett. 2001, 42: 8391 - 39
Bolm C.Wenz K.Raabe G. J. Organomet. Chem. 2002, 662: 23 - 40
Focken T.Hopf H.Snieckus V.Dix I.Jones PG. Eur. J. Org. Chem. 2001, 2221 - 41
Brink M. Synthesis 1975, 807 -
42a
Cram DJ.Allinger NL. J. Am. Chem. Soc. 1955, 77: 6289 -
42b
Duan W.Ma Y.Xia H.Liu X.Ma Q.Sun J. J. Org. Chem. 2008, 73: 4330 - 43
Nugent MJ.Weigang OE. J. Am. Chem. Soc. 1969, 91: 4556 - 44
Hoffman PH.Ong EC.Weigang OE.Nugent MJ. J. Am. Chem. Soc. 2002, 96: 2620
References
This argument was originally stated in reference 5. Chemists that have worked with [2.2]paracyclophane might argue that the greatest impediment to advancing this field is the mercurial nature of these molecules that can hinder even the most simple-looking syntheses.
33The crystal appears to contain the tribromo product co-crystallised with the dibromo product in a 2:1 ratio. There are two independent molecules with different conforma-tions. In both the occupancy of the Br(3) atom is 0.67.