Abstract
The use of enantiomerically enriched 4-tolylsulfinyl[2.2]paracyclophane
as a precursor to a variety of mono- and disubstituted [2.2]paracyclophane
derivatives is described. The goal of our research is to develop
a single general precursor that permits the synthesis of the most
common [2.2]paracyclophane substitution patterns.
The chemistry of two diastereoisomers of 4-tolylsulfinyl[2.2]paracyclophane
has been explored and it facilitates the synthesis of enantiomerically
enriched 4-substituted and 4,13-disubstituted [2.2]paracyclophanes.
Directed lithiations result in an unusual cyclisation reaction.
Whilst the tolyl group cannot realise our goal, the chemistry outlined
acts as a successful ‘proof of concept.’
Key words
asymmetric synthesis - cyclophanes - sulfoxides - enantiomeric resolution
References
1
Brown CJ.
Farthing AC.
Nature
1949,
164:
915
2a
Cram DJ.
Cram JM.
Acc.
Chem. Res.
1971,
4:
204
2b
Cram DJ.
Steinberg H.
J. Am.
Chem. Soc.
1951,
73:
5691
3a
de Meijere A.
Konig B.
Synlett
1997,
1221
3b
Bräse S. In Asymmetric Synthesis
- The Essentials
Christmann M.
Bräse S.
Wiley-VCH;
Weinheim:
2007.
p.67
3c
Modern
Cyclophane Chemistry
Gleiter R.
Hopf H.
Wiley-VCH;
Weinheim:
2004.
3d
Cyclophane Chemistry
Vögtle F.
Wiley;
Chichester:
1993.
3e
Classics
in Hydrocarbon Chemistry
Hopf H.
Wiley-VCH;
Weinheim:
2000.
3f
Aly AA.
Brown AB.
Tetrahedron
2009,
65:
8055
3g
Vu TT.
Badre S.
Dumas-Verdes C.
Vachon JJ.
Julien C.
Audebert P.
Senotrusova EY.
Schmidt EY.
Trofimov BA.
Pansu RB.
Clavier G.
Meallet-Renault R.
J.
Phys. Chem. C
2009,
113:
11844
3h
Bazan GC.
J. Org. Chem.
2007,
72:
8615
3i
Kattnig DR.
Mladenova B.
Grampp G.
Kaiser C.
Heckmann A.
Lambert C.
J. Phys.
Chem. C
2009,
113:
2983
3j
Morisaki Y.
Murakami T.
Sawamura T.
Chujo Y.
Macromolecules
2009,
42:
3656
3k
Schlotter K.
Boeckler F.
Hubner H.
Gmeiner P.
J. Med. Chem.
2006,
49:
3628
3l
Bondarenko L.
Hentschel S.
Greiving H.
Grunenberg J.
Hopf H.
Dix I.
Jones PG.
Ernst L.
Chem. Eur. J.
2007,
13:
3950
3m
Furo T.
Mori T.
Wada T.
Inoue Y.
J. Am. Chem. Soc.
2005,
127:
8242
4
Cram DJ.
Allinger NL.
J. Am. Chem. Soc.
1955,
77:
6289
5
Gibson SE.
Knight JD.
Org. Biomol. Chem.
2003,
1:
1256
6
Rozenberg V.
Sergeeva E.
Hopf H. In Modern Cyclophane Chemistry
Gleiter R.
Hopf H.
Wiley-VCH;
Weinheim:
2004.
p.435
7 This argument was originally stated
in reference 5. Chemists that have worked with [2.2]paracyclophane
might argue that the greatest impediment to advancing this field
is the mercurial nature of these molecules that can hinder even
the most simple-looking syntheses.
8a
Arrayas RG.
Adrio J.
Carretero JC.
Angew. Chem. Int.
Ed.
2006,
45:
7674
8b
Hou XL.
You SL.
Tu T.
Deng WP.
Wu XW.
Li M.
Yuan K.
Zhang TZ.
Dai LX.
Top.
Catal.
2005,
35:
87
8c
Atkinson RCJ.
Gibson VC.
Long NJ.
Chem. Soc. Rev.
2004,
33:
313
8d
Gibson SE.
Ibrahim H.
Chem. Commun.
2002,
2465
8e
Richards CJ.
Locke AJ.
Tetrahedron:
Asymmetry
1998,
9:
2377
8f
Ferber B.
Kagan HB.
Adv. Synth. Catal.
2007,
349:
493
9
Hitchcock PB.
Parmar R.
Rowlands GJ.
Chem. Commun.
2005,
4219
10
Rowlands GJ.
Org.
Biomol. Chem.
2008,
6:
1527
11
Zhang TZ.
Dai LX.
Hou XL.
Tetrahedron: Asymmetry
2007,
18:
251
12
Banfi S.
Manfredi A.
Montanari F.
Pozzi G.
Quici S.
J.
Mol. Catal. A: Chem.
1996,
113:
77
13
Pamperin D.
Hopf H.
Syldatk C.
Pietzsch M.
Tetrahedron: Asymmetry
1997,
8:
319
14
Rozenberg V.
Dubrovina N.
Sergeeva E.
Antonov D.
Belokon Y.
Tetrahedron:
Asymmetry
1998,
9:
653
15
Rozenberg V.
Danilova T.
Sergeeva E.
Vorontsov E.
Starikova Z.
Korlyukov A.
Hopf H.
Eur.
J. Org. Chem.
2002,
468
16a
Cipiciani A.
Bellezza F.
Fringuelli F.
Silvestrini MG.
Tetrahedron: Asymmetry
2001,
12:
2277
16b
Pamperin D.
Ohse B.
Hopf H.
Pietzsch M.
J. Mol. Catal. B: Enzym.
1998,
5:
317
17
Cipiciani A.
Fringuelli F.
Mancini V.
Piermatti O.
Pizzo F.
Ruzziconi R.
J. Org. Chem.
1997,
62:
3744
18
Tanji S.
Ohno A.
Sato I.
Soai K.
Org. Lett.
2001,
3:
287
19
Minuti L.
Taticchi A.
Marrocchi A.
Tetrahedron:
Asymmetry
2000,
11:
4221
20
Kreis M.
Friedmann CJ.
Bräse S.
Chem. Eur. J.
2005,
11:
7387
21
Rossen K.
Pye PJ.
Maliakal A.
Volante RP.
J. Org. Chem.
1997,
62:
6462
22
Reich HJ.
Yelm KE.
J. Org. Chem.
1991,
56:
5672
23a
Bolm C.
Whelligan DK.
Adv.
Synth. Catal.
2006,
348:
2093
23b
Whelligan DK.
Bolm C.
J. Org. Chem.
2006,
71:
4609
23c
Wu XW.
Zhang TZ.
Yuan K.
Hou XL.
Tetrahedron: Asymmetry
2004,
15:
2357
23d
Bolm C.
Focken T.
Raabe G.
Tetrahedron:
Asymmetry
2003,
14:
1733
23e
Wu XW.
Yuan K.
Sun W.
Zhang MJ.
Hou XL.
Tetrahedron:
Asymmetry
2003,
14:
107
23f
Wu XW.
Hou XL.
Dai LX.
Tao J.
Cao BX.
Sun J.
Tetrahedron: Asymmetry
2001,
12:
529
24
Hou XL.
Wu XW.
Dai LX.
Cao BX.
Sun J.
Chem. Commun.
2000,
1195
25
Reich HJ.
Cram DJ.
J. Am. Chem. Soc.
1969,
91:
3534
26a Supporting
Information contains X-ray crytallographic data, full experimental,
and figures showing select NMR data.
26b CCDC-276960-276961
and CCDC-772176-772181 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html
or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.
27
Satoh T.
Matsue R.
Fujii T.
Morikawa S.
Tetrahedron
2001,
57:
3891
28a
Bhalla R.
Boxwell CJ.
Duckett SB.
Dyson PJ.
Humphrey DG.
Steed JW.
Suman P.
Organometallics
2002,
21:
924
28b
Zhang T.-Z.
Dai L.-X.
Hou X.-L.
Tetrahedron:
Asymmetry
2007,
18:
1990
28c
Zhang T.-Z.
Dai L.-X.
Hou X.-L.
Tetrahedron:
Asymmetry
2007,
18:
251
29
Cram DJ.
Hefelfinger DG.
J. Am. Chem.
Soc.
1971,
93:
4754
30
Hitchcock PB.
Rowlands GJ.
Seacome RJ.
Org. Biomol. Chem.
2005,
3:
3873
31
Hopf H. In Modern Cyclophane Chemistry
Gleiter R.
Hopf H.
Wiley-VCH;
Weinheim:
2004.
p.189
32
Reich HJ.
Cram DJ.
J. Am. Chem. Soc.
1969,
91:
3505
33 The crystal appears to contain the
tribromo product co-crystallised with the dibromo product in a 2:1
ratio. There are two independent molecules with different conforma-tions.
In both the occupancy of the Br(3) atom is 0.67.
34
Mancheno OG.
Priego J.
Cabrera S.
Arrayas RG.
Llamas T.
Carretero JC.
J. Org. Chem.
2003,
68:
3679
35
Inoue A.
Kitagawa K.
Shinokubo H.
Oshima K.
J. Org. Chem.
2001,
66:
4333
36a
Whisler MC.
MacNeil S.
Snieckus V.
Beak P.
Angew.
Chem. Int. Ed.
2004,
43:
2206
36b
Quesnelle C.
Iihama T.
Aubert T.
Perrier H.
Snieckus V.
Tetrahedron Lett.
1992,
33:
2625
36c
Snieckus V.
Chem.
Rev.
1990,
90:
879
37a
García Ruano JL.
Carreño MC.
Toledo MA.
Aguirre JM.
Aranda MT.
Fischer J.
Angew.
Chem. Int. Ed.
2000,
39:
2736
37b
García Ruano JL.
Aleman J.
Parra A.
J. Am. Chem. Soc.
2005,
127:
13048
37c
García Ruano JL.
Aranda MT.
Aguirre JM.
Tetrahedron
2004,
60:
5383
37d
García Ruano JL.
Aleman J.
Soriano JF.
Org. Lett.
2003,
5:
677
38
Pelter A.
Mootoo B.
Maxwell A.
Reid A.
Tetrahedron Lett.
2001,
42:
8391
39
Bolm C.
Wenz K.
Raabe G.
J.
Organomet. Chem.
2002,
662:
23
40
Focken T.
Hopf H.
Snieckus V.
Dix I.
Jones PG.
Eur. J.
Org. Chem.
2001,
2221
41
Brink M.
Synthesis
1975,
807
42a
Cram DJ.
Allinger NL.
J. Am. Chem. Soc.
1955,
77:
6289
42b
Duan W.
Ma Y.
Xia H.
Liu X.
Ma Q.
Sun J.
J.
Org. Chem.
2008,
73:
4330
43
Nugent MJ.
Weigang OE.
J. Am. Chem. Soc.
1969,
91:
4556
44
Hoffman PH.
Ong EC.
Weigang OE.
Nugent MJ.
J. Am. Chem. Soc.
2002,
96:
2620