Synlett 2010(15): 2352-2356  
DOI: 10.1055/s-0030-1258033
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Aryl-Substituted 1,4-Benzoquinone via Palladium(II)-Catalyzed Decarboxylative Coupling of Arene Carboxylate with 1,4-Benzoquinone

Yankai Zhao, Yuexia Zhang, Jiantao Wang, Huajie Li, Longmin Wu, Zhongquan Liu*
State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. of China
Fax: +86(931)8915557; e-Mail: liuzhq@lzu.edu.cn;
Further Information

Publication History

Received 28 May 2010
Publication Date:
12 August 2010 (online)

Abstract

Various aryl-substituted 1,4-benzoquinone derivatives have been prepared via a palladium-catalyzed decarboxylative cross-coupling of electron-rich aromatic acids with 1,4-benzoquinones.

    References and Notes

  • For pioneering studies of decarboxylative cross-coupling reactions, see:
  • 1a Nilsson M. Acta Chem. Scand.  1958,  12:  537 
  • 1b Nilsson M. Acta Chem. Scand.  1966,  20:  423 
  • For reviews, see:
  • 1c Baudoin O. Angew. Chem. Int. Ed.  2007,  46:  1373 
  • 1d Gooßen LJ. Rodríguez N. Gooßen K. Angew. Chem. Int. Ed.  2008,  47:  3100 
  • 1e Gooßen LJ. Gooßen K. Rodríguez N. Blanchot M. Linder C. Zimmermann B. Pure Appl. Chem.  2008,  80:  1725 
  • 2a Myers AG. Tanaka D. Mannion MR. J. Am. Chem. Soc.  2002,  124:  11250 
  • 2b Tanaka D. Myers AG. Org. Lett.  2004,  6:  433 
  • 2c Tanaka D. Romeril SP. Myers AG. J. Am. Chem. Soc.  2005,  127:  10323 
  • For selected examples, see:
  • 3a Stephan MS. Teunissen AJJM. Verzijl GKM. de Vries JG. Angew. Chem. Int. Ed.  1998,  37:  662 
  • 3b Rayabarapu DK. Tunge JA. J. Am. Chem. Soc.  2005,  127:  13510 
  • 3c Forgione P. Brochu M.-C. St-Onge M. Thesen KH. Bailey MD. Bilodeau F. J. Am. Chem. Soc.  2006,  128:  11350 
  • 3d Gooßen LJ. Deng G. Levy LM. Science  2006,  313:  662 
  • 3e Gooßen LJ. Rodríguez N. Melzer B. Linder C. Deng G. Levy LM. J. Am. Chem. Soc.  2007,  129:  4824 
  • 3f Becht J.-M. Catala C. Le Drian C. Wagner A. Org. Lett.  2007,  9:  1781 
  • 3g Voutchkova A. Coplin A. Leadbeater NE. Crabtree RH. Chem. Commun.  2008,  6312 
  • 3h Gooßen LJ. Rodríguez N. Linder C. J. Am. Chem. Soc.  2008,  130:  15248 
  • 3i Miyasaka M. Fukushima A. Satoh T. Hirano K. Miura M. Chem. Eur. J.  2009,  15:  3674 
  • 3j Hu P. Kan J. Su WP. Hong MC. Org. Lett.  2009,  11:  2341 
  • 3k Cornella J. Lu P. Larrosa I. Org. Lett.  2009,  11:  5506 
  • 3l Wang ZY. Ding QP. He XD. Wu J. Org. Biomol. Chem.  2009,  7:  863 
  • 3m Shang R. Fu Y. Wang Y. Xu Q. Yu HZ. Liu L. Angew. Chem. Int. Ed.  2009,  48:  9350 
  • 3n Shang R. Fu Y. Li J.-B. Zhang S.-L. Guo Q.-X. Liu L. J. Am. Chem. Soc.  2009,  131:  5738 
  • 3o Zhang S.-L. Fu Y. Shang R. Guo Q.-X. Liu L. J. Am. Chem. Soc.  2010,  132:  638 
  • 3p Gooßen LJ. Rodríguez N. Lange PP. Linder C. Angew. Chem. Int. Ed.  2010,  49:  1111 
  • 3q Yamashita M. Hirano K. Satoh T. Miura M. Org. Lett.  2010,  12:  592 
  • 3r Shang R. Xu Q. Jiang Y.-Y. Wang Y. Liu L. Org. Lett.  2010,  12:  1000 
  • 3s Xie K. Yang Z. Zhou X. Li X. Wang S. Tan Z. An X. Guo C.-C. Org. Lett.  2010,  12:  1564 
  • 3t Zhang F. Greaney MF. Angew. Chem. Int. Ed.  2010,  49:  2768 
  • 4 Zhang B. Salituro G. Szalkowski D. Li Z. Zhang Y. Royo I. Vitella D. Diez MT. Pelaez F. Ruby C. Kendall RL. Mao X. Griffin P. Calaycay J. Zierath JR. Heck JV. Smith RG. Moller DE. Science  1999,  284:  974 
  • 5a Kvalnes DE. J. Am. Chem. Soc.  1934,  56:  2478 
  • 5b Higuchi T. Satake C. Hirobe M. J. Am. Chem. Soc.  1995,  117:  8879 
  • 5c Zhang HB. Liu L. Chen YJ. Wang D. Li C.-J. Adv. Synth. Catal.  2006,  348:  229 
  • 7a Gooßen LJ. Linder C. Rodríguez N. Lange PP. Fromm A. Chem. Commun.  2009,  7173 
  • 7b Cornella J. Sanchez C. Banawa D. Larrosa I. Chem. Commun.  2009,  7176 
  • 7c Lu P. Sanchez C. Cornella J. Larrosa I. Org. Lett.  2009,  11:  5710 
6

Representative Procedure 2,6-Dimethoxybenzoic acid (36 mg, 0.2 mmol, 1.0 equiv), 1,4-benzoquinone (32 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)2 (9 mg, 0.04 mmol, 0.02 equiv), and Ag2CO3 (165 mg, 0.6 mmol, 3 equiv) were added in DMF (10 mL) and DMSO (0.5 mL). The mixture was heated at 120 ˚C for 3 h, then was cooled and poured into EtOAc (50 mL). The mixture was filtered; the filtrate was washed sequentially with aq HCl (1 M, 2 × 40 mL) and brine (20 mL), then was dried over MgSO4, filtered, and concentrated. Chromatographic separation gave the pure product 1 (40 mg, 0.164 mmol, 83%). ¹H NMR (400 MHz, CDCl3): δ = 7.33 (t, J = 8.4 Hz, 1 H), 6.85 (d, J = 10.0 Hz, 1 H), 6.81-6.71 (m, 2 H), 6.61 (d, J = 8.4 Hz, 2 H), 3.73 (s, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 187.80, 185.54, 157.80, 142.73, 137.13, 136.32, 135.99, 130.89, 110.03, 103.96, 55.83. MS (EI): m/z (%) = 244 (100) [M+], 213 (22), 162 (56), 161 (54), 131 (35), 91 (39), 54 (60), 39 (29). ESI-HRMS: m/z calcd for C14H12O4 [M + H]+: 245.0808; found: 245.0803, error: 2.0 ppm.