ABSTRACT
The complex structure, large size, and multiple posttranslational modifications of von Willebrand factor (VWF) presented a technological challenge for the production of recombinant VWF (rVWF). Nonetheless, we developed an rVWF product for treating von Willebrand disease, whereupon rVWF is coexpressed with recombinant factor VIII (rFVIII) in Chinese hamster ovary cells used to produce rFVIII for the treatment of hemophilia A. Here we describe the characterization of the structure and function of the rVWF drug product, with a focus on its in vitro platelet aggregation and matrix protein binding functions. Electron microscopy and multimer analysis revealed a highly organized structure for the rVWF protein, with a homogeneous multimer distribution including ultrahigh molecular weight multimers. The specific activity for binding to collagen and platelets mediated by ristocetin is higher in rVWF than in commercial plasma-derived VWF-FVIII complex products. The affinity and binding capacity of rVWF to FVIII is comparable to VWF in plasma. rVWF effectively binds to platelets and promotes platelet adhesion under shear stress similar to VWF in human plasma.
KEYWORDS
Recombinant von Willebrand factor - VWF - von Willebrand disease - VWD - hemophilia - structure - platelet binding
REFERENCES
1
Plaimauer B, Schlokat U, Turecek P L et al..
Recombinant von Willebrand factor: preclinical development.
Semin Thromb Hemost.
2001;
27(4)
395-403
2
Budde U, Schneppenheim R.
Von Willebrand factor and von Willebrand disease.
Rev Clin Exp Hematol.
2001;
5(4)
335-368
3
Sadler J E.
von Willebrand factor assembly and secretion.
J Thromb Haemost.
2009;
7(Suppl 1)
24-27
4
Ruggeri Z M.
The role of von Willebrand factor in thrombus formation.
Thromb Res.
2007;
120(Suppl 1)
S5-S9
5
Reininger A J.
VWF attributes—impact on thrombus formation.
Thromb Res.
2008;
122(Suppl 4)
S9-S13
6
Reininger A J.
Function of von Willebrand factor in haemostasis and thrombosis.
Haemophilia.
2008;
14(Suppl 5)
11-26
7
Sadler J E.
Biochemistry and genetics of von Willebrand factor.
Annu Rev Biochem.
1998;
67
395-424
8
Kroll M H, Hellums J D, McIntire L V, Schafer A I, Moake J L.
Platelets and shear stress.
Blood.
1996;
88(5)
1525-1541
9
Goto S, Salomon D R, Ikeda Y, Ruggeri Z M.
Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets.
J Biol Chem.
1995;
270(40)
23352-23361
10
Lenting P J, van Mourik J A, Mertens K.
The life cycle of coagulation factor VIII in view of its structure and function.
Blood.
1998;
92(11)
3983-3996
11
Weiss H J, Sussman I I, Hoyer L W.
Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand's disease.
J Clin Invest.
1977;
60(2)
390-404
12
Denis C V, Christophe O D, Oortwijn B D, Lenting P J.
Clearance of von Willebrand factor.
Thromb Haemost.
2008;
99(2)
271-278
13
Fischer B E.
Recombinant von Willebrand factor: potential therapeutic use.
J Thromb Thrombolysis.
1999;
8(3)
197-205
14
Turecek P L, Mitterer A, Matthiessen H P et al..
Development of a plasma- and albumin-free recombinant von Willebrand factor.
Hamostaseologie.
2009;
29(Suppl 1)
S32-S38
15
Blanchette V S, Shapiro A D, Liesner R J rAHF-PFM Clinical Study Group et al.
Plasma and albumin-free recombinant factor VIII: pharmacokinetics, efficacy and safety in previously treated pediatric patients.
J Thromb Haemost.
2008;
6(8)
1319-1326
16
Fretto L J, Fowler W E, McCaslin D R, Erickson H P, McKee P A.
Substructure of human von Willebrand factor. Proteolysis by V8 and characterization of two functional domains.
J Biol Chem.
1986;
261(33)
15679-15689
17
Ohmori K, Fretto L J, Harrison R L, Switzer M E, Erickson H P, McKee P A.
Electron microscopy of human factor VIII/Von Willebrand glycoprotein: effect of reducing reagents on structure and function.
J Cell Biol.
1982;
95(2 Pt 1)
632-640
18
Ruggeri Z M, Zimmerman T S.
The complex multimeric composition of factor VIII/von Willebrand factor.
Blood.
1981;
57(6)
1140-1143
19
Aihara M, Sawada Y, Ueno K et al..
Visualization of von Willebrand factor multimers by immunoenzymatic stain using avidin-biotin peroxidase complex.
Thromb Haemost.
1986;
55(2)
263-267
20
Sadler J E.
Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura.
Blood.
2008;
112(1)
11-18
21
Franchini M, Mannucci P M.
Von Willebrand factor: another janus-faced hemostasis protein.
Semin Thromb Hemost.
2008;
34(7)
663-669
22
Furlan M, Robles R, Lämmle B.
Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.
Blood.
1996;
87(10)
4223-4234
23
Varadi K, Rottensteiner H, Vejda S et al..
Species-dependent variability of ADAMTS13-mediated proteolysis of human recombinant von Willebrand factor.
J Thromb Haemost.
2009;
7(7)
1134-1142
24
Berndt M C, Ward C M, Booth W J, Castaldi P A, Mazurov A V, Andrews R K.
Identification of aspartic acid 514 through glutamic acid 542 as a glycoprotein Ib-IX complex receptor recognition sequence in von Willebrand factor. Mechanism of modulation of von Willebrand factor by ristocetin and botrocetin.
Biochemistry.
1992;
31(45)
11144-11151
25
Hulstein J J, de Groot P G, Silence K, Veyradier A, Fijnheer R, Lenting P J.
A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B.
Blood.
2005;
106(9)
3035-3042
26
Bendetowicz A V, Morris J A, Wise R J, Gilbert G E, Kaufman R J.
Binding of factor VIII to von Willebrand factor is enabled by cleavage of the von Willebrand factor propeptide and enhanced by formation of disulfide-linked multimers.
Blood.
1998;
92(2)
529-538
27
Vlot A J, Koppelman S J, Berg van den M H, Bouma B N, Sixma J J.
The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor.
Blood.
1995;
85(11)
3150-3157
28
Sadler J E.
von Willebrand factor: two sides of a coin.
J Thromb Haemost.
2005;
3(8)
1702-1709
29
Favaloro E J.
Clinical utility of the PFA-100.
Semin Thromb Hemost.
2008;
34(8)
709-733
30
Soslau G, Class R, Morgan D A et al..
Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib.
J Biol Chem.
2001;
276(24)
21173-21183
31
Sakariassen K S, Muggli R, Baumgartner H R.
Measurements of platelet interaction with components of the vessel wall in flowing blood.
Methods Enzymol.
1989;
169
37-70
32
Ruggeri Z M, Mendolicchio G L.
Adhesion mechanisms in platelet function.
Circ Res.
2007;
100(12)
1673-1685
33
Federici A B.
The factor VIII/von Willebrand factor complex: basic and clinical issues.
Haematologica.
2003;
88(6)
, EREP02
34
Kokame K, Matsumoto M, Soejima K et al..
Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity.
Proc Natl Acad Sci U S A.
2002;
99(18)
11902-11907
35
Levy G G, Nichols W C, Lian E C et al..
Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura.
Nature.
2001;
413(6855)
488-494
36
Plaimauer B, Zimmermann K, Völkel D et al..
Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13).
Blood.
2002;
100(10)
3626-3632
37
Turecek P L, Furlan M, Lämmle B et al..
Cleavage of recombinant von Willebrand Factor (vWF) by a vWF-depolymerizing protease.
Blood.
1996;
88(Suppl 1)
326a
, Abstract 1291
38
Lethagen S, Carlson M, Hillarp A.
A comparative in vitro evaluation of six von Willebrand factor concentrates.
Haemophilia.
2004;
10(3)
243-249
39
Budde U, Metzner H J, Müller H G.
Comparative analysis and classification of von Willebrand factor/factor VIII concentrates: impact on treatment of patients with von Willebrand disease.
Semin Thromb Hemost.
2006;
32(6)
626-635
40
Hubbard A R.
von Willebrand factor standards for plasma and concentrate testing.
Semin Thromb Hemost.
2006;
32(5)
522-528
41
Muchitsch E-M, Dietrich B, Rottensteiner H, Auer W, Nehrbass D, Gritsch H, Ehrlich H J, Schwarz H P, Turecek P L.
Non-clinical testing of human recombinant von Willebrand factor: ADAMTS13 cleavage capacity in animals as criterion for species suitability.
Semin Thromb Hemost.
2010;
35(5)
522-528
Peter L TurecekPh.D.
Baxter Innovations GmbH, Industriestrasse 67
1220, Vienna, Austria
eMail: peter_turecek@baxter.com