Semin Liver Dis 2010; 30(3): 258-270
DOI: 10.1055/s-0030-1255355
© Thieme Medical Publishers

Hypoxia: A Link between Fibrogenesis, Angiogenesis, and Carcinogenesis in Liver Disease

Olivier Rosmorduc1 , 2 , 3 , Chantal Housset1 , 2 , 3
  • 1UPMC Univ Paris 06, Hôpital Saint-Antoine, Service d'Hépatologie, Paris, France
  • 2INSERM UMR_S938, Hôpital Saint-Antoine, Service d'Hépatologie, Paris, France
  • 3AP-HP, Hôpital Saint-Antoine, Service d'Hépatologie, Paris, France
Further Information

Publication History

Publication Date:
21 July 2010 (online)

ABSTRACT

Liver injury causes vascular disorganization and local tissue hypoxia starting early in disease course. In this context, hypoxia acts not only as an aggravating factor of cell damage and inflammation, but also as an inhibitor of liver regeneration, a major stimulus of angiogenesis and fibrogenesis, and a promoter of liver carcinogenesis. Many of the effects of hypoxia are mediated by hypoxia-inducible factor-1α (HIF-1α), an oxygen-sensitive transcription factor. Compared to cells in the periportal area, intralobular hepatic stellate cells (HSCs) are more responsive to hypoxia and like other pericytes play a key role in angiogenesis through interactions with endothelial cells via platelet-derived growth factor (PGDF) and vascular endothelial growth factor (VEGF) signaling, at the leading edge of fibrotic septa. Although required for successful liver repair, angiogenesis in cirrhosis may be inefficient because of the immaturity and permeability of VEGF-induced neo-vessels, and thereby may fail to correct liver hypoxia. The multiple receptor tyrosine kinase inhibitors, acting on VEGF and PDGF receptors, initially designed for cancer treatment, show in addition to therapeutic efficacy in patients with hepatocellular carcinoma, beneficial effects on many aspects of the progression of liver diseases, including, fibrosis, inflammation and portal hypertension.

REFERENCES

  • 1 Minamishima Y A, Moslehi J, Padera R F, Bronson R T, Liao R, Kaelin Jr W G. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo.  Mol Cell Biol. 2009;  29 5729-5741
  • 2 Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver.  Hepatology. 2000;  31 255-260
  • 3 Wiesener M S, Jürgensen J S, Rosenberger C et al.. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs.  FASEB J. 2003;  17 271-273
  • 4 Martin H, Sarsat J P, Lerche-Langrand C et al.. Morphological and biochemical integrity of human liver slices in long-term culture: effects of oxygen tension.  Cell Biol Toxicol. 2002;  18 73-85
  • 5 Beaussier M, Wendum D, Fouassier L et al.. Adaptative bile duct proliferative response in experimental bile duct ischemia.  J Hepatol. 2005;  42 257-265
  • 6 Fouassier L, Beaussier M, Schiffer E et al.. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes.  Am J Physiol Gastrointest Liver Physiol. 2007;  293 G25-G35
  • 7 Rius J, Guma M, Schachtrup C et al.. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha.  Nature. 2008;  453 807-811
  • 8 Rappaport A M, MacPhee P J, Fisher M M, Phillips M J. The scarring of the liver acini (cirrhosis). Tridimensional and microcirculatory considerations.  Virchows Arch A Pathol Anat Histopathol. 1983;  402 107-137
  • 9 Onori P, Morini S, Franchitto A, Sferra R, Alvaro D, Gaudio E. Hepatic microvascular features in experimental cirrhosis: a structural and morphometrical study in CCl4-treated rats.  J Hepatol. 2000;  33 555-563
  • 10 Arteel G E, Thurman R G, Raleigh J A. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state.  Eur J Biochem. 1998;  253 743-750
  • 11 Koeppel T A, Trauner M, Baas J C et al.. Extrahepatic biliary obstruction impairs microvascular perfusion and increases leukocyte adhesion in rat liver.  Hepatology. 1997;  26 1085-1091
  • 12 Moon J O, Welch T P, Gonzalez F J, Copple B L. Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice.  Am J Physiol Gastrointest Liver Physiol. 2009;  296 G582-G592
  • 13 Rosmorduc O, Wendum D, Corpechot C et al.. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis.  Am J Pathol. 1999;  155 1065-1073
  • 14 Corpechot C, Barbu V, Wendum D et al.. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis.  Hepatology. 2002;  35 1010-1021
  • 15 Copple B L, Bustamante J J, Welch T P, Kim N D, Moon J O. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.  Liver Int. 2009;  29 1010-1021
  • 16 Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes.  Blood. 1999;  94 4177-4185
  • 17 Ankoma-Sey V, Matli M, Chang K B et al.. Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing.  Oncogene. 1998;  17 115-121
  • 18 Yoshiji H, Kuriyama S, Yoshii J et al.. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis.  Gut. 2003;  52 1347-1354
  • 19 Novo E, Cannito S, Zamara E et al.. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells.  Am J Pathol. 2007;  170 1942-1953
  • 20 Kuwabara K, Ogawa S, Matsumoto M et al.. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells.  Proc Natl Acad Sci U S A. 1995;  92 4606-4610
  • 21 Kong T, Eltzschig H K, Karhausen J, Colgan S P, Shelley C S. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression.  Proc Natl Acad Sci U S A. 2004;  101 10440-10445
  • 22 Ceradini D J, Gurtner G C. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue.  Trends Cardiovasc Med. 2005;  15 57-63
  • 23 Manotham K, Tanaka T, Matsumoto M et al.. Transdifferentiation of cultured tubular cells induced by hypoxia.  Kidney Int. 2004;  65 871-880
  • 24 Kimura K, Iwano M, Higgins D F et al.. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis.  Am J Physiol Renal Physiol. 2008;  295 F1023-F1029
  • 25 Higgins D F, Kimura K, Bernhardt W M et al.. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition.  J Clin Invest. 2007;  117 3810-3820
  • 26 Sun S, Ning X, Zhang Y et al.. Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition.  Kidney Int. 2009;  75 1278-1287
  • 27 Shimoda K, Mori M, Shibuta K, Banner B F, Barnard G F. Vascular endothelial growth factor/vascular permeability factor mRNA expression in patients with chronic hepatitis C and hepatocellular carcinoma.  Int J Oncol. 1999;  14 353-359
  • 28 Lee J S, Semela D, Iredale J, Shah V H. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte?.  Hepatology. 2007;  45 817-825
  • 29 Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells.  Hepatology. 2000;  31 141-148
  • 30 Aleffi S, Petrai I, Bertolani C et al.. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells.  Hepatology. 2005;  42 1339-1348
  • 31 Bosselut N, Housset C, Marcelo P et al.. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts.  Proteomics. 2010;  10 1017-1028
  • 32 Kinnman N, Hultcrantz R, Barbu V et al.. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.  Lab Invest. 2000;  80 697-707
  • 33 Kinnman N, Francoz C, Barbu V et al.. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis.  Lab Invest. 2003;  83 163-173
  • 34 Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.  J Hepatol. 2002;  36 200-209
  • 35 Bockhorn M, Goralski M, Prokofiev D et al.. VEGF is important for early liver regeneration after partial hepatectomy.  J Surg Res. 2007;  138 291-299
  • 36 Masson S, Scotté M, François A et al.. Changes in growth factor and cytokine mRNA levels after hepatectomy in rat with CCl(4)-induced cirrhosis.  Am J Physiol. 1999;  277(4 Pt 1) G838-G846
  • 37 Corpechot C, Barbu V, Wendum D et al.. Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: a potential mechanism for liver regeneration failure in experimental cirrhosis.  Am J Pathol. 2002;  160 613-620
  • 38 Schiffer E, Housset C, Cacheux W et al.. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis.  Hepatology. 2005;  41 307-314
  • 39 Housset C, Rockey D C, Bissell D M. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1.  Proc Natl Acad Sci U S A. 1993;  90 9266-9270
  • 40 Rockey D C, Housset C N, Friedman S L. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo.  J Clin Invest. 1993;  92 1795-1804
  • 41 Rockey D C, Fouassier L, Chung J J et al.. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells.  Hepatology. 1998;  27 472-480
  • 42 Fernandez M, Mejias M, Angermayr B, Garcia-Pagan J C, Rodés J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats.  J Hepatol. 2005;  43 98-103
  • 43 Tugues S, Fernandez-Varo G, Muñoz-Luque J et al.. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats.  Hepatology. 2007;  46 1919-1926
  • 44 DeBerardinis R J, Lum J J, Hatzivassiliou G, Thompson C B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.  Cell Metab. 2008;  7 11-20
  • 45 Koshiji M, To K K, Hammer S et al.. HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression.  Mol Cell. 2005;  17 793-803
  • 46 Xia X, Lemieux M E, Li W et al.. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis.  Proc Natl Acad Sci U S A. 2009;  106 4260-4265
  • 47 Miyoshi A, Kitajima Y, Ide T et al.. Hypoxia accelerates cancer invasion of hepatoma cells by upregulating MMP expression in an HIF-1alpha-independent manner.  Int J Oncol. 2006;  29 1533-1539
  • 48 Box A H, Demetrick D J. Cell cycle kinase inhibitor expression and hypoxia-induced cell cycle arrest in human cancer cell lines.  Carcinogenesis. 2004;  25 2325-2335
  • 49 Gwak G Y, Yoon J H, Kim K M, Lee H S, Chung J W, Gores G J. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression.  J Hepatol. 2005;  42 358-364
  • 50 Kim K W, Bae S K, Lee O H, Bae M H, Lee M J, Park B C. Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma.  Cancer Res. 1998;  58 348-351
  • 51 Baek J H, Jang J E, Kang C M, Chung H Y, Kim N D, Kim K W. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis.  Oncogene. 2000;  19 4621-4631
  • 52 Mazure N M, Nguyen T L, Danan J L. Severe hypoxia specifically downregulates hepatocyte nuclear factor-4 gene expression in HepG2 human hepatoma cells.  Tumour Biol. 2001;  22 310-317
  • 53 Ivan M, Haberberger T, Gervasi D C et al.. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor.  Proc Natl Acad Sci U S A. 2002;  99 13459-13464
  • 54 Reiberger T, Angermayr B, Schwabl P et al.. Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats.  J Hepatol. 2009;  51 865-873
  • 55 Hennenberg M, Trebicka J, Stark C, Kohistani A Z, Heller J, Sauerbruch T. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis.  Br J Pharmacol. 2009;  157 258-270
  • 56 Mejias M, Garcia-Pras E, Tiani C, Miquel R, Bosch J, Fernandez M. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats.  Hepatology. 2009;  49 1245-1256
  • 57 Kang D H, Hughes J, Mazzali M, Schreiner G F, Johnson R J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function.  J Am Soc Nephrol. 2001;  12 1448-1457
  • 58 Patsenker E, Popov Y, Stickel F et al.. Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis.  Hepatology. 2009;  50(5) 1501-1511
  • 59 Llovet J M, Ricci S, Mazzaferro V SHARP Investigators Study Group et al. Sorafenib in advanced hepatocellular carcinoma.  N Engl J Med. 2008;  359 378-390
  • 60 Lee K, Qian D Z, Rey S, Wei H, Liu J O, Semenza G L. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells.  Proc Natl Acad Sci U S A. 2009;  106 2353-2358

Chantal HoussetM.D. Ph.D. 

UMR_S 938, Centre de Recherche Saint-Antoine, Faculté de Médecine Pierre et Marie Curie, Site Saint-Antoine

27 rue Chaligny, 75571 Paris Cedex 12, France

Email: Chantal.Housset@inserm.fr

    >