Am J Perinatol 2010; 27(10): 803-818
DOI: 10.1055/s-0030-1254550
© Thieme Medical Publishers

Neuroimaging and Neurodevelopmental Outcome of Premature Infants

Mohamed El-Dib1 , 3 , An N. Massaro1 , 3 , Dorothy Bulas2 , 3 , Hany Aly1 , 3
  • 1Department of Neonatology, Children's National Medical Center, Washington DC
  • 2Department of Radiology, Children's National Medical Center, Washington DC
  • 3The George Washington University, Washington DC
Further Information

Publication History

Publication Date:
18 May 2010 (online)

ABSTRACT

Preterm birth is associated with variable degrees of brain injury and adverse neurodevelopmental outcomes. Neuroimaging has been investigated as a predictor of outcome in this population. Head ultrasound allows for rapid bedside evaluation of the neonatal brain for early intraventricular hemorrhage surveillance and later detection of periventricular leukomalacia. Computed tomography can provide excellent views for bones, hemorrhage, extra-axial space, and the ventricles but is rarely used for prognostic purposes. Magnetic resonance imaging allows for high-resolution images of brain structures, differentiation of white and gray matter, visualization of the brain stem and posterior fossa, and getting additional physiological information with specialized sequences. Though controversial, the use of magnetic resonance imaging, at term equivalent, as a predictor of later outcome in preterm infants has been increasing and has been advocated by some as a standard practice. In this article, we review and contrast the use of these various imaging modalities in predicting neurodevelopmental outcome of premature infants.

REFERENCES

  • 1 Buckley K M, Taylor G A, Estroff J A, Barnewolt C E, Share J C, Paltiel H J. Use of the mastoid fontanelle for improved sonographic visualization of the neonatal midbrain and posterior fossa.  AJR Am J Roentgenol. 1997;  168 1021-1025
  • 2 Luna J A, Goldstein R B. Sonographic visualization of neonatal posterior fossa abnormalities through the posterolateral fontanelle.  AJR Am J Roentgenol. 2000;  174 561-567
  • 3 Correa F, Enríquez G, Rosselló J et al.. Posterior fontanelle sonography: an acoustic window into the neonatal brain.  AJNR Am J Neuroradiol. 2004;  25 1274-1282
  • 4 Papile L-A, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm.  J Pediatr. 1978;  92 529-534
  • 5 Leviton A, Kuban K, Paneth N. Intraventricular haemorrhage grading scheme: time to abandon?.  Acta Paediatr. 2007;  96 1254-1256
  • 6 Paneth N. Classifying brain damage in preterm infants.  J Pediatr. 1999;  134 527-529
  • 7 Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions.  Semin Neonatol. 2001;  6 135-146
  • 8 Volpe J J. Neurology of the Newborn. 5th ed. Philadelphia; Saunders/Elsevier 2008: xiv
  • 9 Stewart A L, Reynolds E O, Hope P L et al.. Probability of neurodevelopmental disorders estimated from ultrasound appearance of brains of very preterm infants.  Dev Med Child Neurol. 1987;  29 3-11
  • 10 Whitelaw A. A different view: there is value in grading intraventricular hemorrhage.  Acta Paediatr. 2007;  96 1257-1258
  • 11 Leijser L M, Srinivasan L, Rutherford M A, Counsell S J, Allsop J M, Cowan F M. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI.  Pediatr Radiol. 2007;  37 640-648
  • 12 Levene M I. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound.  Arch Dis Child. 1981;  56 900-904
  • 13 Kennedy C R, Ayers S, Campbell M J, Elbourne D, Hope P, Johnson A. Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year.  Pediatrics. 2001;  108 597-607
  • 14 Maertzdorf W J, Vles J S, Beuls E, Mulder A L, Blanco C E. Intracranial pressure and cerebral blood flow velocity in preterm infants with posthaemorrhagic ventricular dilatation.  Arch Dis Child Fetal Neonatal Ed. 2002;  87 F185-F188
  • 15 Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M. Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy.  Pediatrics. 2003;  111(4 Pt 1) 759-765
  • 16 Davies M W, Swaminathan M, Chuang S L, Betheras F R. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates.  Arch Dis Child Fetal Neonatal Ed. 2000;  82 F218-F223
  • 17 de Vries L S, Eken P, Dubowitz L M. The spectrum of leukomalacia using cranial ultrasound.  Behav Brain Res. 1992;  49 1-6
  • 18 Limperopoulos C, Benson C B, Bassan H et al.. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors.  Pediatrics. 2005;  116 717-724
  • 19 Limperopoulos C, Bassan H, Gauvreau K et al.. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors?.  Pediatrics. 2007;  120 584-593
  • 20 Merrill J D, Piecuch R E, Fell S C, Barkovich A J, Goldstein R B. A new pattern of cerebellar hemorrhages in preterm infants.  Pediatrics. 1998;  102 E62
  • 21 Anderson N G, Laurent I, Cook N, Woodward L, Inder T E. Growth rate of corpus callosum in very premature infants.  AJNR Am J Neuroradiol. 2005;  26 2685-2690
  • 22 Anderson N G, Laurent I, Woodward L J, Inder T E. Detection of impaired growth of the corpus callosum in premature infants.  Pediatrics. 2006;  118 951-960
  • 23 Bode H, Wais U. Age dependence of flow velocities in basal cerebral arteries.  Arch Dis Child. 1988;  63 606-611
  • 24 Kehrer M, Krägeloh-Mann I, Goelz R, Schöning M. The development of cerebral perfusion in healthy preterm and term neonates.  Neuropediatrics. 2003;  34 281-286
  • 25 Lightburn M H, Gauss C H, Williams D K, Kaiser J R. Cerebral blood flow velocities in extremely low birth weight infants with hypotension and infants with normal blood pressure.  J Pediatr. 2009;  154 824-828
  • 26 Blankenberg F G, Loh N N, Norbash A M et al.. Impaired cerebrovascular autoregulation after hypoxic-ischemic injury in extremely low-birth-weight neonates: detection with power and pulsed wave Doppler US.  Radiology. 1997;  205 563-568
  • 27 Perlman J M, McMenamin J B, Volpe J J. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage.  N Engl J Med. 1983;  309 204-209
  • 28 Julkunen M, Parviainen T, Janas M, Tammela O. End-diastolic block in cerebral circulation may predict intraventricular hemorrhage in hypotensive extremely-low-birth-weight infants.  Ultrasound Med Biol. 2008;  34 538-545
  • 29 Taylor G A. Effect of germinal matrix hemorrhage on terminal vein position and patency.  Pediatr Radiol. 1995;  25(Suppl 1) S37-S40
  • 30 Taylor G A, Madsen J R. Neonatal hydrocephalus: hemodynamic response to fontanelle compression— correlation with intracranial pressure and need for shunt placement.  Radiology. 1996;  201 685-689
  • 31 van Alfen-van der Velden A A, Hopman J C, Klaessens J H, Feuth T, Sengers R C, Liem K D. Cerebral hemodynamics and oxygenation after serial CSF drainage in infants with PHVD.  Brain Dev. 2007;  29 623-629
  • 32 Ment L R, Bada H S, Barnes P et al.. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.  Neurology. 2002;  58 1726-1738
  • 33 De Vries L S, Van Haastert I LC, Rademaker K J, Koopman C, Groenendaal F. Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants.  J Pediatr. 2004;  144 815-820
  • 34 Pinto J, Paneth N, Kazam E et al.. Interobserver variability in neonatal cranial ultrasonography.  Paediatr Perinat Epidemiol. 1988;  2 43-58
  • 35 Corbett S S, Rosenfeld C R, Laptook A R et al.. Intraobserver and interobserver reliability in assessment of neonatal cranial ultrasounds.  Early Hum Dev. 1991;  27 9-17
  • 36 Corah N L, Anthony E J, Painter P, Stern J A, Thurston D L. Effects of perinatal anoxia after seven years.  Psychol Monogr. 1965;  79(Suppl 3) 1-34
  • 37 O'Shea T M, Volberg F, Dillard R G. Reliability of interpretation of cranial ultrasound examinations of very low-birthweight neonates.  Dev Med Child Neurol. 1993;  35 97-101
  • 38 Hintz S R, Slovis T, Bulas D NICHD Neonatal Research Network et al. Interobserver reliability and accuracy of cranial ultrasound scanning interpretation in premature infants.  J Pediatr. 2007;  150 592-596, e1–e5
  • 39 Ancel P Y, Livinec F, Larroque B EPIPAGE Study Group et al. Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: the EPIPAGE cohort study.  Pediatrics. 2006;  117 828-835
  • 40 Stewart A L, Thorburn R J, Hope P L, Goldsmith M, Lipscomb A P, Reynolds E O. Ultrasound appearance of the brain in very preterm infants and neurodevelopmental outcome at 18 months of age.  Arch Dis Child. 1983;  58 598-604
  • 41 Costello A M, Hamilton P A, Baudin J et al.. Prediction of neurodevelopmental impairment at four years from brain ultrasound appearance of very preterm infants.  Dev Med Child Neurol. 1988;  30 711-722
  • 42 Roth S C, Baudin J, McCormick D C et al.. Relation between ultrasound appearance of the brain of very preterm infants and neurodevelopmental impairment at eight years.  Dev Med Child Neurol. 1993;  35 755-768
  • 43 Aziz K, Vickar D B, Sauve R S, Etches P C, Pain K S, Robertson C M. Province-based study of neurologic disability of children weighing 500 through 1249 grams at birth in relation to neonatal cerebral ultrasound findings.  Pediatrics. 1995;  95 837-844
  • 44 Chaudhari S, Kinare A S, Kumar R, Pandit A N, Deshpande M. Ultrasonography of the brain in preterm infants and its correlation with neurodevelopmental outcome.  Indian Pediatr. 1995;  32 735-742
  • 45 Ong L C, Boo N Y, Chandran V et al.. Neurodevelopmental outcome of Malaysian very low birth weight infants: predictive value of cranial ultrasound appearances.  Singapore Med J. 1997;  38 108-111
  • 46 Ment L R, Vohr B, Allan W et al.. The etiology and outcome of cerebral ventriculomegaly at term in very low birth weight preterm infants.  Pediatrics. 1999;  104(2 Pt 1) 243-248
  • 47 Pinto-Martin J A, Whitaker A H, Feldman J F, Van Rossem R, Paneth N. Relation of cranial ultrasound abnormalities in low-birthweight infants to motor or cognitive performance at ages 2, 6, and 9 years.  Dev Med Child Neurol. 1999;  41 826-833
  • 48 Hack M, Wilson-Costello D, Friedman H, Taylor G H, Schluchter M, Fanaroff A A. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992–1995.  Arch Pediatr Adolesc Med. 2000;  154 725-731
  • 49 Vollmer B, Roth S, Baudin J, Stewart A L, Neville B G, Wyatt J S. Predictors of long-term outcome in very preterm infants: gestational age versus neonatal cranial ultrasound.  Pediatrics. 2003;  112 1108-1114
  • 50 Laptook A R, O'Shea T M, Shankaran S, Bhaskar B. NICHD Neonatal Network . Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents.  Pediatrics. 2005;  115 673-680
  • 51 Sherlock R L, Anderson P J, Doyle L W. Victorian Infant Collaborative Study Group . Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants.  Early Hum Dev. 2005;  81 909-916
  • 52 Vohr B R, Msall M E, Wilson D, Wright L L, McDonald S, Poole W K. Spectrum of gross motor function in extremely low birth weight children with cerebral palsy at 18 months of age.  Pediatrics. 2005;  116 123-129
  • 53 Wood N S, Costeloe K, Gibson A T, Hennessy E M, Marlow N, Wilkinson A R. EPICure Study Group . The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth.  Arch Dis Child Fetal Neonatal Ed. 2005;  90 F134-F140
  • 54 Taylor H G, Klein N, Drotar D, Schluchter M, Hack M. Consequences and risks of <1000-g birth weight for neuropsychological skills, achievement, and adaptive functioning.  J Dev Behav Pediatr. 2006;  27 459-469
  • 55 Patra K, Wilson-Costello D, Taylor H G, Mercuri-Minich N, Hack M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment.  J Pediatr. 2006;  149 169-173
  • 56 Vohr B R, Wright L L, Poole W K, McDonald S A. Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks' gestation between 1993 and 1998.  Pediatrics. 2005;  116 635-643
  • 57 Stewart A, Kirkbride V. Very preterm infants at fourteen years: relationship with neonatal ultrasound brain scans and neurodevelopmental status at one year.  Acta Paediatr Suppl. 1996;  416 44-47
  • 58 van Bel F, den Ouden L, van de Bor M, Stijnen T, Baan J, Ruys J H. Cerebral blood-flow velocity during the first week of life of preterm infants and neurodevelopment at two years.  Dev Med Child Neurol. 1989;  31 320-328
  • 59 Ojala T, Kääpä P, Helenius H et al.. Low cerebral blood flow resistance in nonventilated preterm infants predicts poor neurologic outcome.  Pediatr Crit Care Med. 2004;  5 264-268
  • 60 Stevenson D K, Goldworth A. Ethical considerations in neuroimaging and its impact on decision-making for neonates.  Brain Cogn. 2002;  50 449-454
  • 61 Bassan H, Limperopoulos C, Visconti K et al.. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction.  Pediatrics. 2007;  120 785-792
  • 62 Flodmark O, Roland E, Hill A, Whitfield M. Radiologic diagnosis of periventricular leukomalacia.  Acta Radiol Suppl. 1986;  369 664-666
  • 63 Fitzhardinge P M, Flodmark O, Fitz C R, Ashby S. The prognostic value of computed tomography of the brain in asphyxiated premature infants.  J Pediatr. 1982;  100 476-481
  • 64 Ishida A, Nakajima W, Arai H et al.. Cranial computed tomography scans of premature babies predict their eventual learning disabilities.  Pediatr Neurol. 1997;  16 319-322
  • 65 Karlsson P, Holmberg E, Lundell M, Mattsson A, Holm L E, Wallgren A. Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma.  Radiat Res. 1998;  150 357-364
  • 66 Brenner D J, Doll R, Goodhead D T et al.. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know.  Proc Natl Acad Sci U S A. 2003;  100 13761-13766
  • 67 Hall P, Adami H O, Trichopoulos D et al.. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study.  BMJ. 2004;  328 19
  • 68 Stein S C, Hurst R W, Sonnad S S. Meta-analysis of cranial CT scans in children. A mathematical model to predict radiation-induced tumors.  Pediatr Neurosurg. 2008;  44 448-457
  • 69 Neil J J, Inder T E. Imaging perinatal brain injury in premature infants.  Semin Perinatol. 2004;  28 433-443
  • 70 Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research.  Neuron. 2006;  51 527-539
  • 71 Mettler F A. Essentials of Radiology. 2nd ed. Philadelphia; Elsevier Saunders 2005: xi
  • 72 Maalouf E F, Duggan P J, Rutherford M A et al.. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants.  J Pediatr. 1999;  135 351-357
  • 73 Fearon I, Kisilevsky B S, Hains S M, Muir D W, Tranmer J. Swaddling after heel lance: age-specific effects on behavioral recovery in preterm infants.  J Dev Behav Pediatr. 1997;  18 222-232
  • 74 Inder T E, Warfield S K, Wang H, Hüppi P S, Volpe J J. Abnormal cerebral structure is present at term in premature infants.  Pediatrics. 2005;  115 286-294
  • 75 Thompson D K, Warfield S K, Carlin J B et al.. Perinatal risk factors altering regional brain structure in the preterm infant.  Brain. 2007;  130(Pt 3) 667-677
  • 76 Skranes J S, Vik T, Nilsen G, Smevik O, Andersson H W, Brubakk A M. Cerebral magnetic resonance imaging and mental and motor function of very low birth weight children at six years of age.  Neuropediatrics. 1997;  28 149-154
  • 77 Cooke R W, Abernethy L J. Cranial magnetic resonance imaging and school performance in very low birth weight infants in adolescence.  Arch Dis Child Fetal Neonatal Ed. 1999;  81 F116-F121
  • 78 Fearon P, O'Connell P, Frangou S et al.. Brain volumes in adult survivors of very low birth weight: a sibling-controlled study.  Pediatrics. 2004;  114 367-371
  • 79 Miller S P, Vigneron D B, Henry R G et al.. Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury.  J Magn Reson Imaging. 2002;  16 621-632
  • 80 Hüppi P S, Murphy B, Maier S E et al.. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging.  Pediatrics. 2001;  107 455-460
  • 81 Inder T E, Wells S J, Mogridge N B, Spencer C, Volpe J J. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study.  J Pediatr. 2003;  143 171-179
  • 82 Woodward L J, Anderson P J, Austin N C, Howard K, Inder T E. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants.  N Engl J Med. 2006;  355 685-694
  • 83 Kapellou O, Counsell S J, Kennea N et al.. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.  PLoS Med. 2006;  3 e265
  • 84 Peterson B S, Anderson A W, Ehrenkranz R et al.. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants.  Pediatrics. 2003;  111(5 Pt 1) 939-948
  • 85 Ajayi-Obe M, Saeed N, Cowan F M, Rutherford M A, Edwards A D. Reduced development of cerebral cortex in extremely preterm infants.  Lancet. 2000;  356 1162-1163
  • 86 Nosarti C, Al-Asady M HS, Frangou S, Stewart A L, Rifkin L, Murray R M. Adolescents who were born very preterm have decreased brain volumes.  Brain. 2002;  125(Pt 7) 1616-1623
  • 87 Boardman J P, Counsell S J, Rueckert D et al.. Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry.  Neuroimage. 2006;  32 70-78
  • 88 Srinivasan L, Dutta R, Counsell S J et al.. Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images.  Pediatrics. 2007;  119 759-765
  • 89 Dubois J, Benders M, Borradori-Tolsa C et al.. Primary cortical folding in the human newborn: an early marker of later functional development.  Brain. 2008;  131(Pt 8) 2028-2041
  • 90 Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi P S. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy.  Magn Reson Med. 2002;  48 949-958
  • 91 Miller S P, Newton N, Ferriero D M et al.. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors.  Pediatr Res. 2002;  52 71-77
  • 92 Heep A, Scheef L, Jankowski J et al.. Functional magnetic resonance imaging of the sensorimotor system in preterm infants.  Pediatrics. 2009;  123 294-300
  • 93 Nanba Y, Matsui K, Aida N et al.. Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants.  Pediatrics. 2007;  120 e10-e19
  • 94 Aida N, Nishimura G, Hachiya Y, Matsui K, Takeuchi M, Itani Y. MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings.  AJNR Am J Neuroradiol. 1998;  19 1909-1921
  • 95 Woodward L J, Edgin J O, Thompson D, Inder T E. Object working memory deficits predicted by early brain injury and development in the preterm infant.  Brain. 2005;  128(Pt 11) 2578-2587
  • 96 Olsén P, Pääkkö E, Vainionpää L, Pyhtinen J, Järvelin M R. Magnetic resonance imaging of periventricular leukomalacia and its clinical correlation in children.  Ann Neurol. 1997;  41 754-761
  • 97 Dyet L E, Kennea N, Counsell S J et al.. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment.  Pediatrics. 2006;  118 536-548
  • 98 Krishnan M L, Dyet L E, Boardman J P et al.. Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years.  Pediatrics. 2007;  120 e604-e609
  • 99 Murakami A, Morimoto M, Yamada K et al.. Fiber-tracking techniques can predict the degree of neurologic impairment for periventricular leukomalacia.  Pediatrics. 2008;  122 500-506
  • 100 De Vries L S, Groenendaal F, van Haastert I C, Eken P, Rademaker K J, Meiners L C. Asymmetrical myelination of the posterior limb of the internal capsule in infants with periventricular haemorrhagic infarction: an early predictor of hemiplegia.  Neuropediatrics. 1999;  30 314-319
  • 101 Roelants-van Rijn A M, Groenendaal F, Beek F J, Eken P, van Haastert I C, de Vries L S. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome.  Neuropediatrics. 2001;  32 80-89
  • 102 Arzoumanian Y, Mirmiran M, Barnes P D et al.. Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants.  AJNR Am J Neuroradiol. 2003;  24 1646-1653
  • 103 Rose J, Mirmiran M, Butler E E et al.. Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits.  Dev Med Child Neurol. 2007;  49 745-750
  • 104 Rose J, Butler E E, Lamont L E, Barnes P D, Atlas S W, Stevenson D K. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children.  Dev Med Child Neurol. 2009;  51 526-535
  • 105 Rademaker K J, Lam J NGP, Van Haastert I C et al.. Larger corpus callosum size with better motor performance in prematurely born children.  Semin Perinatol. 2004;  28 279-287
  • 106 Iai M, Tanabe Y, Goto M, Sugita K, Niimi H. A comparative magnetic resonance imaging study of the corpus callosum in neurologically normal children and children with spastic diplegia.  Acta Paediatr. 1994;  83 1086-1090
  • 107 Nosarti C, Rushe T M, Woodruff P WR, Stewart A L, Rifkin L, Murray R M. Corpus callosum size and very preterm birth: relationship to neuropsychological outcome.  Brain. 2004;  127(Pt 9) 2080-2089
  • 108 Counsell S J, Edwards A D, Chew A T et al.. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm.  Brain. 2008;  131(Pt 12) 3201-3208
  • 109 Berman J I, Glass H C, Miller S P et al.. Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns.  AJNR Am J Neuroradiol. 2009;  30 120-124
  • 110 Bassi L, Ricci D, Volzone A et al.. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age.  Brain. 2008;  131(Pt 2) 573-582
  • 111 Skranes J S, Vik T, Nilsen G et al.. Cerebral magnetic resonance imaging (MRI) and mental and motor function of very low birth weight infants at one year of corrected age.  Neuropediatrics. 1993;  24 256-262
  • 112 Martinussen M, Fischl B, Larsson H B et al.. Cerebral cortex thickness in 15-year-old adolescents with low birth weight measured by an automated MRI-based method.  Brain. 2005;  128(Pt 11) 2588-2596
  • 113 Shah D K, Anderson P J, Carlin J B et al.. Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age.  Pediatr Res. 2006;  60 97-102
  • 114 Limperopoulos C, Soul J S, Gauvreau K et al.. Late gestation cerebellar growth is rapid and impeded by premature birth.  Pediatrics. 2005;  115 688-695
  • 115 Srinivasan L, Allsop J, Counsell S J, Boardman J P, Edwards A D, Rutherford M. Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions.  AJNR Am J Neuroradiol. 2006;  27 573-579
  • 116 Abernethy L J, Klafkowski G, Foulder-Hughes L, Cooke R WI. Magnetic resonance imaging and T2 relaxometry of cerebral white matter and hippocampus in children born preterm.  Pediatr Res. 2003;  54 868-874
  • 117 Thompson D K, Wood S J, Doyle L W et al.. Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome.  Ann Neurol. 2008;  63 642-651
  • 118 Isaacs E B, Lucas A, Chong W K et al.. Hippocampal volume and everyday memory in children of very low birth weight.  Pediatr Res. 2000;  47 713-720
  • 119 Roelants-van Rijn A M, van der Grond J, Stigter R H, de Vries L S, Groenendaal F. Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates.  Pediatr Res. 2004;  56 285-290
  • 120 Augustine E M, Spielman D M, Barnes P D et al.. Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants?.  J Perinatol. 2008;  28 611-618
  • 121 Dumoulin C L, Rohling K W, Piel J E et al.. Magnetic resonance imaging compatible neonate incubator.  Concepts Magn Reson Part B. 2002;  15 117-128
  • 122 Blüml S, Friedlich P, Erberich S, Wood J C, Seri I, Nelson Jr M D. MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: initial experience.  Radiology. 2004;  231 594-601

Mohamed El-DibM.D. 

Department of Neonatology, Children's National Medical Center

111 Michigan Avenue, NW, Washington DC, 20010

Email: mafeldib@gmail.com

    >