Semin Musculoskelet Radiol 2010; 14(2): 269-278
DOI: 10.1055/s-0030-1253167
© Thieme Medical Publishers

Biochemical and Physiological MR Imaging of Skeletal Muscle at 7 Tesla and Above

Gregory Chang1 , Ligong Wang1 , Arturo Cárdenas-Blanco2 , 3 , 4 , Mark E. Schweitzer5 , Michael P. Recht1 , Ravinder R. Regatte1
  • 1Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York
  • 2Department of Radiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
  • 3Department of Orthopedic Surgery, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
  • 4Department of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
  • 5Department of Diagnostic Imaging, Ottawa General Hospital, Ottawa, Ontario, Canada
Further Information

Publication History

Publication Date:
18 May 2010 (online)

ABSTRACT

Ultra-high field (UHF; ≥7 T) magnetic resonance imaging (MRI), with its greater signal-to-noise ratio, offers the potential for increased spatial resolution, faster scanning, and, above all, improved biochemical and physiological imaging of skeletal muscle. The increased spectral resolution and greater sensitivity to low-gamma nuclei available at UHF should allow techniques such as 1H MR spectroscopy (MRS), 31P MRS, and 23Na MRI to be more easily implemented. Numerous technical challenges exist in the performance of UHF MRI, including changes in relaxation values, increased chemical shift and susceptibility artifact, radiofrequency (RF) coil design/B1 + field inhomogeneity, and greater RF energy deposition. Nevertheless, the possibility of improved functional and metabolic imaging at UHF will likely drive research efforts in the near future to overcome these challenges and allow studies of human skeletal muscle physiology and pathophysiology to be possible at ≥7 T.

REFERENCES

  • 1 Prompers J J, Jeneson J A, Drost M R, Oomens C C, Strijkers G J, Nicolay K. Dynamic MRS and MRI of skeletal muscle function and biomechanics.  NMR Biomed. 2006;  19(7) 927-953
  • 2 Carlier P G, Bertoldi D, Baligand C, Wary C, Fromes Y. Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy.  NMR Biomed. 2006;  19(7) 954-967
  • 3 Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism.  NMR Biomed. 2006;  19(7) 968-988
  • 4 Boesch C. Musculoskeletal spectroscopy.  J Magn Reson Imaging. 2007;  25(2) 321-338
  • 5 Regatte R R, Schweitzer M E. Ultra-high-field MRI of the musculoskeletal system at 7.0T.  J Magn Reson Imaging. 2007;  25(2) 262-269
  • 6 Krug R, Stehling C, Kelley D A, Majumdar S, Link T M. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T.  Invest Radiol. 2009;  44(9) 613-618
  • 7 Hoult D I, Lauterbur P C. The sensitivity of the zeugmatographic experiment involving human samples.  J Magn Reson. 1979;  34 425-433
  • 8 Collins C M. Radiofrequency field calculations for high field MRI. In: Robitaille PM, Berliner LJ Ultra High Field Magnetic Resonance Imaging. New York, NY; Springer 2006: 209-248
  • 9 Bottomley P A, Foster T H, Argersinger R E, Pfeifer L M. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age.  Med Phys. 1984;  11(4) 425-448
  • 10 Pruessmann K P. Parallel imaging at high field strength: synergies and joint potential.  Top Magn Reson Imaging. 2004;  15(4) 237-244
  • 11 Schmitt F, Potthast A, Stoeckel B et al.. Aspect of clinical imaging at 7T. In: Robitaille PM, Berliner LJ Ultra High Field Magnetic Resonance Imaging. New York, NY; Springer 2006: 59-103
  • 12 Ibrahim T S, Lee R, Baertlein B A, Kangarlu A, Robitaille P L. Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations.  Magn Reson Imaging. 2000;  18(6) 733-742
  • 13 Vaughan J T, Garwood M, Collins C M et al.. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images.  Magn Reson Med. 2001;  46(1) 24-30
  • 14 Wei Q, Liu F, Xia L, Crozier S. An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI—applications to high field analyses.  J Magn Reson. 2005;  172 222-230
  • 15 Beck B L, Jenkins K, Caserta J, Padgett K, Fitzsimmons J, Blackband S J. Observation of significant signal voids in images of large biological samples at 11.1 T.  Magn Reson Med. 2004;  51(6) 1103-1107
  • 16 Collins C M, Smith M B. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees ” RF pulse for the head in the birdcage coil.  Magn Reson Med. 2001;  45(4) 684-691
  • 17 Ibrahim T S. A numerical analysis of radiofrequency power requirements in magnetic resonance imaging experiments.  IEEE Trans Microw Theory Tech. 2004;  52(8) 1999-2003
  • 18 Hetherington H P, Hamm J R, Pan J W, Rothman D L, Shulman R G. A fully localized 1H homonuclear editing sequence to observe lactate in human skeletal muscle after exercise.  J Magn Reson. 1989;  82 86-96
  • 19 Pan J W, Hamm J R, Hetherington H P, Rothman D L, Shulman R G. Correlation of lactate and pH in human skeletal muscle after exercise by 1H NMR.  Magn Reson Med. 1991;  20(1) 57-65
  • 20 Jouvensal L, Carlier P G, Bloch G. Practical implementation of single-voxel double-quantum editing on a whole-body NMR spectrometer: localized monitoring of lactate in the human leg during and after exercise.  Magn Reson Med. 1996;  36(3) 487-490
  • 21 Brillault-Salvat C, Giacomini E, Wary C et al.. An interleaved heteronuclear NMRI-NMRS approach to non-invasive investigation of exercising human skeletal muscle.  Cell Mol Biol (Noisy-le-grand). 1997;  43(5) 751-762
  • 22 Brault J J, Towse T F, Slade J M, Meyer R A. Parallel increases in phosphocreatine and total creatine in human vastus lateralis muscle during creatine supplementation.  Int J Sport Nutr Exerc Metab. 2007;  17(6) 624-634
  • 23 Wang Z Y, Noyszewski E A, Leigh Jr J S. In vivo MRS measurement of deoxymyoglobin in human forearms.  Magn Reson Med. 1990;  14(3) 562-567
  • 24 Kruiskamp M J, De Vilder S J, De Graaf R A, Nicolay K. 31P/ and 1H/MRS measurements of metabolite diffusion in rat and mouse hindleg skeletal muscle.  Proc ISMRM. 1999;  7 697
  • 25 Decombaz J, Schmitt B, Ith M et al.. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects.  Am J Physiol Regul Integr Comp Physiol. 2001;  281 R760-R769
  • 26 Thamer C, Machann J, Bachmann O et al.. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity.  J Clin Endocrinol Metab. 2003;  88(4) 1785-1791
  • 27 Goodpaster B H, He J, Watkins S, Kelley D E. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes.  J Clin Endocrinol Metab. 2001;  86(12) 5755-5761
  • 28 Wang L, Salibi N, Wu Y, Schweitzer M E, Regatte R R. Relaxation times of skeletal muscle metabolites at 7T.  J Magn Reson Imaging. 2009;  29(6) 1457-1464
  • 29 Khuu A, Ren J, Dimitrov I et al.. Orientation of lipid strands in the extracellular compartment of muscle: effect on quantitation of intramyocellular lipids.  Magn Reson Med. 2009;  61(1) 16-21
  • 30 Versluis M J, Kan H E, van Buchem M A, Webb A G. Improved signal to noise in proton spectroscopy of the human calf muscle at 7 T using localized B1 calibration.  Magn Reson Med. 2010;  63(1) 207-211
  • 31 Fissoune R, Janier M, Briguet A, Hiba B. In vivo assessment of mouse hindleg intramyocellular lipids by 1H-MR spectroscopy.  Acad Radiol. 2009;  16(7) 890-896
  • 32 Fleckenstein J L, Canby R C, Parkey R W, Peshock R M. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers.  AJR Am J Roentgenol. 1988;  151(2) 231-237
  • 33 Patten C, Meyer R A, Fleckenstein J L. T2 mapping of muscle.  Semin Musculoskelet Radiol. 2003;  7(4) 297-305
  • 34 Damon B M, Gregory C D, Hall K L, Stark H J, Gulani V, Dawson M J. Intracellular acidification and volume increases explain R(2) decreases in exercising muscle.  Magn Reson Med. 2002;  47(1) 14-23
  • 35 Saab G, Thompson R T, Marsh G D. Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry.  J Appl Physiol. 2000;  88(1) 226-233
  • 36 Ploutz-Snyder L L, Nyren S, Cooper T G, Potchen E J, Meyer R A. Different effects of exercise and edema on T2 relaxation in skeletal muscle.  Magn Reson Med. 1997;  37(5) 676-682
  • 37 Du J, Hamilton G, Takahashi A, Bydder M, Chung C B. Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone.  Magn Reson Med. 2007;  58(5) 1001-1009
  • 38 Techawiboonwong A, Song H K, Leonard M B, Wehrli F W. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging.  Radiology. 2008;  248(3) 824-833
  • 39 Du J, Chiang A JT, Chung C B et al.. Orientational analysis of Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence.  Magn Reson Imaging. 2010;  28(2) 178-184
  • 40 Oatridge A, Herlihy A H, Thomas R W et al.. Magnetic resonance: magic angle imaging of the Achilles tendon.  Lancet. 2001;  358(9293) 1610-1611
  • 41 Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland J B, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.  NMR Biomed. 2006;  19(7) 781-821
  • 42 Constantinides C D, Gillen J S, Boada F E, Pomper M G, Bottomley P A. Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease.  Radiology. 2000;  216(2) 559-568
  • 43 Bansal N, Szczepaniak L, Ternullo D, Fleckenstein J L, Malloy C R. Effect of exercise on (23)Na MRI and relaxation characteristics of the human calf muscle.  J Magn Reson Imaging. 2000;  11(5) 532-538
  • 44 Weber M A, Nielles-Vallespin S, Huttner H B et al.. Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness.  Radiology. 2006;  240(2) 489-500
  • 45 Nielles-Vallespin S, Weber M A, Bock M et al.. 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle.  Magn Reson Med. 2007;  57(1) 74-81
  • 46 Park J H, Brown R L, Park C R et al.. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.  Proc Natl Acad Sci U S A. 1987;  84 8976-8980
  • 47 McCully K K, Boden B P, Tuchler M, Fountain M R, Chance B. Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy.  J Appl Physiol. 1989;  67(3) 926-932
  • 48 Minotti J R, Johnson E C, Hudson T L et al.. Training-induced skeletal muscle adaptations are independent of systemic adaptations.  J Appl Physiol. 1990;  68(1) 289-294
  • 49 Yoshida T, Watari H. Metabolic consequences of repeated exercise in long distance runners.  Eur J Appl Physiol Occup Physiol. 1993;  67 261-265
  • 50 Ross B D, Radda G K, Gadian D G, Rocker G, Esiri M, Falconer-Smith J. Examination of a case of suspected McArdle's syndrome by 31P nuclear magnetic resonance.  N Engl J Med. 1981;  304(22) 1338-1342
  • 51 Gruetter R, Kaelin P, Boesch C, Martin E, Werner B. Non-invasive 31P magnetic resonance spectroscopy revealed McArdle disease in an asymptomatic child.  Eur J Pediatr. 1990;  149(7) 483-486
  • 52 de Kerviler E, Leroy-Willig A, Jehenson P, Duboc D, Eymard B, Syrota A. Exercise-induced muscle modifications: study of healthy subjects and patients with metabolic myopathies with MR imaging and P-31 spectroscopy.  Radiology. 1991;  181(1) 259-264
  • 53 Zange J, Grehl T, Disselhorst-Klug C et al.. Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle's disease: a noninvasive 31P-MRS and EMG study.  Muscle Nerve. 2003;  27(6) 728-736
  • 54 Vorgerd M, Zange J. Carbohydrate oxidation disorders of skeletal muscle.  Curr Opin Clin Nutr Metab Care. 2002;  5(6) 611-617
  • 55 Chance B, Eleff S, Bank W, Leigh Jr J S, Warnell R. 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle.  Proc Natl Acad Sci U S A. 1982;  79(24) 7714-7718
  • 56 Edwards R HT, Dawson M J, Wilkie D R, Gordon R E, Shaw D. Clinical use of nuclear magnetic resonance in the investigation of myopathy.  Lancet. 1982;  1(8274) 725-731
  • 57 Vissing J, Vissing S F, MacLean D A, Saltin B, Quistorff B, Haller R G. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies.  J Clin Invest. 1998;  101(8) 1654-1660
  • 58 Taivassalo T, De Stefano N, Argov Z et al.. Effects of aerobic training in patients with mitochondrial myopathies.  Neurology. 1998;  50(4) 1055-1060
  • 59 Kuhl C K, Layer G, Träber F, Zierz S, Block W, Reiser M. Mitochondrial encephalomyopathy: correlation of P-31 exercise MR spectroscopy with clinical findings.  Radiology. 1994;  192(1) 223-230
  • 60 Schunk K, Romaneehsen B, Rieker O et al.. Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease: effects of vascular therapy on spectroscopic results.  Invest Radiol. 1998;  33(6) 329-335
  • 61 Kemp G J, Hands L J, Ramaswami G et al.. Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy.  Clin Sci (Lond). 1995;  89(6) 581-590
  • 62 Scheuermann-Freestone M, Madsen P L, Manners D et al.. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes.  Circulation. 2003;  107(24) 3040-3046
  • 63 Petersen K F, Befroy D, Dufour S et al.. Mitochondrial dysfunction in the elderly: possible role in insulin resistance.  Science. 2003;  300(5622) 1140-1142
  • 64 Kent-Braun J A, Ng A V, Doyle J W, Towse T F. Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise.  J Appl Physiol. 2002;  93(5) 1813-1823
  • 65 Horská A, Fishbein K W, Fleg J L, Spencer R G. The relationship between creatine kinase kinetics and exercise intensity in human forearm is unchanged by age.  Am J Physiol Endocrinol Metab. 2000;  279(2) E333-E339
  • 66 Bogner W, Chmelik M, Schmid A I, Moser E, Trattnig S, Gruber S. Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo.  Magn Reson Med. 2009;  62(3) 574-582
  • 67 Duong T Q, Yacoub E, Adriany G et al.. High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T.  Magn Reson Med. 2002;  48(4) 589-593
  • 68 Yacoub E, Van De Moortele P F, Shmuel A, Uğurbil K. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.  Neuroimage. 2005;  24(3) 738-750

Gregory ChangM.D. 

Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine

660 First Ave., New York, NY 10016

Email: gregory.chang@nyumc.org