Subscribe to RSS
DOI: 10.1055/s-0030-1251476
Proinflammatory and Profibrotic Mediators: Principal Effectors of Leiomyoma Development as a Fibrotic Disorder
Publication History
Publication Date:
22 April 2010 (online)
ABSTRACT
Leiomyomas are believed to derive from the transformation of myometrial smooth muscle cells/connective tissue fibroblasts. Although the identity of the molecule(s) that initiate such cellular transformation and orchestrate subsequent growth is still unknown, conventional evidence indicates that ovarian steroids are essential for leiomyoma growth. Ovarian steroid action in their target cell/tissue is mediated in part through local expression of various growth factors, cytokines, and chemokines. These autocrine/paracrine molecules with proinflammatory and profibrotic activities serve as major contributing factors in regulating cellular transformation, cell growth and apoptosis, angiogenesis, cellular hypertrophy, and excess tissue turnover, events central to leiomyoma growth. This review addresses the key regulatory functions of proinflammatory and profibrotic mediators and their molecular mechanisms, downstream signaling that regulates cellular events that result in transformation, and commitments of specific cells into forming a cellular environment with a possible role in development and subsequent growth of leiomyomas.
KEYWORDS
Inflammation - cytokines - chemokines - proteases - fibrosis - leiomyoma
REFERENCES
- 1 Holly J. Physiology of the IGF system. Novartis Found Symp. 2004; 262 19-26, 26–35, 265–268
- 2 Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer Genet Cytogenet. 2000; 121(1) 1-8
- 3 Ligon A H, Morton C C. Leiomyomata: heritability and cytogenetic studies. Hum Reprod Update. 2001; 7(1) 8-14
- 4 Lobel M K, Somasundaram P, Morton C C. The genetic heterogeneity of uterine leiomyomata. Obstet Gynecol Clin North Am. 2006; 33(1) 13-39
- 5 Parker W H. Uterine myomas: management. Fertil Steril. 2007; 88(2) 255-271
- 6 Parker W H. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril. 2007; 87(4) 725-736
- 7 Wallach E E, Vlahos N F. Uterine myomas: an overview of development, clinical features, and management. Obstet Gynecol. 2004; 104(2) 393-406
- 8 Stewart E A. Uterine fibroids. Lancet. 2001; 357(9252) 293-298
- 9 Bradley L D. Uterine fibroid embolization: a viable alternative to hysterectomy. Am J Obstet Gynecol. 2009; 201(2) 127-135
- 10 Lénárd Z M, McDannold N J, Fennessy F M et al.. Uterine leiomyomas: MR imaging-guided focused ultrasound surgery—imaging predictors of success. Radiology. 2008; 249(1) 187-194
- 11 Wada-Hiraike O, Yamamoto N, Osuga Y, Yano T, Kozuma S, Taketani Y. Aberrant implantation and growth of uterine leiomyoma in the abdominal wall after laparoscopically assisted myomectomy. Fertil Steril. 2009; 92(5) 1747, e13-e15
- 12 DeManno D, Elger W, Garg R et al.. Asoprisnil (J867): a selective progesterone receptor modulator for gynecological therapy. Steroids. 2003; 68(10–13) 1019-1032
- 13 Eisinger S H, Meldrum S, Fiscella K, le Roux H D, Guzick D S. Low-dose mifepristone for uterine leiomyomata. Obstet Gynecol. 2003; 101(2) 243-250
- 14 Jirecek S, Lee A, Pavo I, Crans G, Eppel W, Wenzl R. Raloxifene prevents the growth of uterine leiomyomas in premenopausal women. Fertil Steril. 2004; 81(1) 132-136
- 15 Palomba S, Russo T, Orio Jr F et al.. Effectiveness of combined GnRH analogue plus raloxifene administration in the treatment of uterine leiomyomas: a prospective, randomized, single-blind, placebo-controlled clinical trial. Hum Reprod. 2002; 17(12) 3213-3219
- 16 Palomba S, Orio Jr F, Morelli M et al.. Raloxifene administration in premenopausal women with uterine leiomyomas: a pilot study. J Clin Endocrinol Metab. 2002; 87(8) 3603-3608
- 17 Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000; 73(5) 1006-1011
- 18 Chwalisz K, Larsen L, Mattia-Goldberg C, Edmonds A, Elger W, Winkel C A. A randomized, controlled trial of asoprisnil, a novel selective progesterone receptor modulator, in women with uterine leiomyomata. Fertil Steril. 2007; 87(6) 1399-1412
- 19 Lee B S, Nowak R A. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001; 86(2) 913-920
- 20 Levens E D, Potlog-Nahari C, Armstrong A Y et al.. CDB-2914 for uterine leiomyomata treatment: a randomized controlled trial. Obstet Gynecol. 2008; 111(5) 1129-1136
- 21 Spitz I M. Clinical utility of progesterone receptor modulators and their effect on the endometrium. Curr Opin Obstet Gynecol. 2009; 21(4) 318-324
-
22 Chegini N.
Implication of growth factor and cytokine networks in leiomyomas . In: Hill J Cytokines in Human Reproduction. New York, NY; Wiley & Sons 2000: 133-159 - 23 Chegini N, Verala J, Luo X, Xu J, Williams R S. Gene expression profile of leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. J Soc Gynecol Investig. 2003; 10(3) 161-171
- 24 Luo X, Ding L, Xu J, Williams R S, Chegini N. Leiomyoma and myometrial gene expression profiles and their responses to gonadotropin-releasing hormone analog therapy. Endocrinology. 2005; 146(3) 1074-1096
- 25 Walker C L, Stewart E A. Uterine fibroids: the elephant in the room. Science. 2005; 308(5728) 1589-1592
- 26 Chegini N, Ma C, Tang X M, Williams R S. Effects of GnRH analogues, ‘add-back’ steroid therapy, antiestrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-beta expression. Mol Hum Reprod. 2002; 8(12) 1071-1078
- 27 Chen W, Ohara N, Wang J et al.. A novel selective progesterone receptor modulator asoprisnil (J867) inhibits proliferation and induces apoptosis in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells. J Clin Endocrinol Metab. 2006; 91(4) 1296-1304
- 28 Ding L, Xu J, Luo X, Chegini N. Gonadotropin releasing hormone and transforming growth factor beta activate mitogen-activated protein kinase/extracellularly regulated kinase and differentially regulate fibronectin, type I collagen, and plasminogen activator inhibitor-1 expression in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 2004; 89(11) 5549-5557
- 29 Ohara N, Morikawa A, Chen W et al.. Comparative effects of SPRM asoprisnil (J867) on proliferation, apoptosis, and the expression of growth factors in cultured uterine leiomyoma cells and normal myometrial cells. Reprod Sci. 2007; 14(8, suppl) 20-27
- 30 Ohara N. Action of progesterone receptor modulators on uterine leiomyomas. Clin Exp Obstet Gynecol. 2008; 35(3) 165-166
- 31 Stewart E A, Austin D J, Jain P, Penglase M D, Nowak R A. RU486 suppresses prolactin production in explant cultures of leiomyoma and myometrium. Fertil Steril. 1996; 65(6) 1119-1124
- 32 Williams A R, Critchley H O, Osei J et al.. The effects of the selective progesterone receptor modulator asoprisnil on the morphology of uterine tissues after 3 months treatment in patients with symptomatic uterine leiomyomata. Hum Reprod. 2007; 22(6) 1696-1704
- 33 Xu Q, Takekida S, Ohara N et al.. Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5′-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells. J Clin Endocrinol Metab. 2005; 90(2) 953-961
- 34 Xu Q, Ohara N, Chen W et al.. Progesterone receptor modulator CDB-2914 down-regulates vascular endothelial growth factor, adrenomedullin and their receptors and modulates progesterone receptor content in cultured human uterine leiomyoma cells. Hum Reprod. 2006; 21(9) 2408-2416
- 35 Xu Q, Ohara N, Liu J et al.. Progesterone receptor modulator CDB-2914 induces extracellular matrix metalloproteinase inducer in cultured human uterine leiomyoma cells. Mol Hum Reprod. 2008; 14(3) 181-191
- 36 Madauss K P, Grygielko E T, Deng S J et al.. A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol. 2007; 21(5) 1066-1081
- 37 Hussein-Fikret S, Fuller P J, Gargett C E. Expression of steroid receptor coactivators in cultured cells from paired myometrial and fibroid tissues. J Soc Gynecol Investig. 2005; 12(6) 445-451
- 38 Berman J M. Intrauterine adhesions. Semin Reprod Med. 2008; 26(4) 349-355
- 39 Davies C, Gibson M, Holt E M, Torrie E P. Amenorrhoea secondary to endometrial ablation and Asherman's syndrome following uterine artery embolization. Clin Radiol. 2002; 57(4) 317-318
- 40 Hare A A, Olah K S. Pregnancy following endometrial ablation: a review article. J Obstet Gynaecol. 2005; 25(2) 108-114
- 41 Magos A. Hysteroscopic treatment of Asherman's syndrome. Reprod Biomed Online. 2002; 4(suppl 3) 46-51
- 42 Buchanan E P, Longaker M T, Lorenz H P. Fetal skin wound healing. Adv Clin Chem. 2009; 48 137-161
- 43 Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6) 1420-1428
- 44 Kisseleva T, Brenner D A. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol. 2006; 21(suppl 3) S84-S87
- 45 Kisseleva T, Uchinami H, Feirt N et al.. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol. 2006; 45(3) 429-438
- 46 Kisseleva T, Brenner D A. Mechanisms of fibrogenesis. Exp Biol Med (Maywood). 2008; 233(2) 109-122
- 47 Lee E Y, Xia Y, Kim W S et al.. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009; 17(4) 540-547
- 48 Martínez-Climent J A, Andreu E J, Prosper F. Somatic stem cells and the origin of cancer. Clin Transl Oncol. 2006; 8(9) 647-663
- 49 Mehrad B, Burdick M D, Zisman D A, Keane M P, Belperio J A, Strieter R M. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun. 2007; 353(1) 104-108
- 50 Stappenbeck T S, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science. 2009; 324(5935) 1666-1669
- 51 Mattoli S, Bellini A, Schmidt M. The role of a human hematopoietic mesenchymal progenitor in wound healing and fibrotic diseases and implications for therapy. Curr Stem Cell Res Ther. 2009; , December 1 (Epub ahead of print)
- 52 Chen Y, Xiang L X, Shao J Z, Pan R L, Wang Y X, Dong XJ, et al.. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med. 2009; , September 24 (Epub ahead of print)
- 53 Keeley E C, Mehrad B, Strieter R M. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of fibrotic disorders. Thromb Haemost. 2009; 101(4) 613-618
- 54 Chang H L, Senaratne T N, Zhang L et al.. Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2009; , October 5 (Epub ahead of print)
- 55 Ono M, Maruyama T, Masuda H et al.. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007; 104(47) 18700-18705
- 56 Acloque H, Thiery J P, Nieto M A. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep. 2008; 9(4) 322-326
- 57 Acloque H, Adams M S, Fishwick K, Bronner-Fraser M, Nieto M A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009; 119(6) 1438-1449
- 58 Singer A J, Clark R A. Cutaneous wound healing. N Engl J Med. 1999; 341(10) 738-746
- 59 Fitzpatrick F A, Soberman R. Regulated formation of eicosanoids. J Clin Invest. 2001; 107(11) 1347-1351
- 60 Fitzpatrick F A. Cyclooxygenase enzymes: regulation and function. Curr Pharm Des. 2004; 10(6) 577-588
- 61 Bennett J S. Platelet-fibrinogen interactions. Ann N Y Acad Sci. 2001; 936 340-354
- 62 Bennett J S, Berger B W, Billings P C. The structure and function of platelet integrins. J Thromb Haemost. 2009; 7(suppl 1) 200-205
- 63 Clemetson K J, Clemetson J M. Platelet receptor signalling. Hematol J. 2004; 5(suppl 3) S159-S163
- 64 Clemetson K J, Clemetson J M. Collagen receptors as potential targets for novel anti-platelet agents. Curr Pharm Des. 2007; 13(26) 2673-2683
- 65 Hinz B, Phan S H, Thannickal V J, Galli A, Bochaton-Piallat M L, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007; 170(6) 1807-1816
- 66 Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007; 127(3) 526-537
- 67 Clark R A. Fibrin and wound healing. Ann N Y Acad Sci. 2001; 936 355-367
- 68 Hwu Y M, Li S H, Lee R K, Tsai Y H, Yeh T S, Lin S Y. Increased expression of platelet-derived growth factor C messenger ribonucleic acid in uterine leiomyomata. Fertil Steril. 2008; 89(2) 468-471
- 69 Miura S, Khan K N, Kitajima M et al.. Differential infiltration of macrophages and prostaglandin production by different uterine leiomyomas. Hum Reprod. 2006; 21(10) 2545-2554
- 70 Sozen I, Olive D L, Arici A. Expression and hormonal regulation of monocyte chemotactic protein-1 in myometrium and leiomyomata. Fertil Steril. 1998; 69(6) 1095-1102
- 71 Sozen I, Arici A. Cellular biology of myomas: interaction of sex steroids with cytokines and growth factors. Obstet Gynecol Clin North Am. 2006; 33(1) 41-58
- 72 Suzuki M, Takamizawa S, Nomaguchi K et al.. Erythropoietin synthesis by tumour tissues in a patient with uterine myoma and erythrocytosis. Br J Haematol. 2001; 113(1) 49-51
- 73 Mesquita F S, Dyer S N, Heinrich D A, Bulun S E, Marsh E E, Nowak R A. Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol Reprod. 2010; 82(2) 341-351
- 74 Collen D, Lijnen H R. The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol. 2009; 29(8) 1151-1155
- 75 Holly S P, Larson M K, Parise L V. Multiple roles of integrins in cell motility. Exp Cell Res. 2000; 261(1) 69-74
- 76 Lijnen H R. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001; 936 226-236
- 77 Lijnen H R. Extracellular proteolysis in the development and progression of atherosclerosis. Biochem Soc Trans. 2002; 30(2) 163-167
- 78 Lijnen H R. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc). 2002; 67(1) 92-98
- 79 Andreou A, Feussner I. Lipoxygenases—structure and reaction mechanism. Phytochemistry. 2009; 70(13–14) 1504-1510
- 80 Chawengsub Y, Gauthier K M, Campbell W B. Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 2009; 297(2) H495-H507
- 81 Mochizuki N, Kwon Y G. 15-lipoxygenase-1 in the vasculature: expanding roles in angiogenesis. Circ Res. 2008; 102(2) 143-145
- 82 O'Donnell V B, Maskrey B, Taylor G W. Eicosanoids: generation and detection in mammalian cells. Methods Mol Biol. 2009; 462 5-23
- 83 Wymann M P, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008; 9(2) 162-176
- 84 Aitokallio-Tallberg A. Prostacyclin and thromboxane synthesis by endometrial cancer and leiomyomas. Prostaglandins. 1990; 39(3) 259-266
- 85 Pinto S, Coppo M, Bruni V, Rosati D, Cirri R, Abbate R. Changes in thromboxane A2 generation and plasma lipid pattern in pseudomenopause induced by gonadotropin releasing hormone (GnRH) analogue buserelin. Prostaglandins Leukot Essent Fatty Acids. 1991; 43(3) 203-207
- 86 Rees M C, Turnbull A C. Leiomyomas release prostaglandins. Prostaglandins Leukot Med. 1985; 18(1) 65-68
- 87 Yamaguchi M, Mori N. Prostaglandin production by human myometrium, uterine cervix and leiomyoma. Prostaglandins Leukot Med. 1987; 29(1) 107-112
- 88 O'Garra A, Robinson D. Development and function of T helper 1 cells. Adv Immunol. 2004; 83 133-162
- 89 Stetson D B, Voehringer D, Grogan J L et al.. Th2 cells: orchestrating barrier immunity. Adv Immunol. 2004; 83 163-189
- 90 Gerard C, Rollins B J. Chemokines and disease. Nat Immunol. 2001; 2(2) 108-115
- 91 Lau E K, Allen S, Hsu A R, Handel T M. Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv Protein Chem. 2004; 68 351-391
- 92 Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000; 12(2) 121-127
- 93 Keeley E C, Mehrad B, Strieter R M. Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol. 2008; 28(11) 1928-1936
- 94 Mehrad B, Keane M P, Strieter R M. Chemokines as mediators of angiogenesis. Thromb Haemost. 2007; 97(5) 755-762
- 95 Dimitrova I K, Richer J K, Rudolph M C et al.. Gene expression profiling of multiple leiomyomata uteri and matched normal tissue from a single patient. Fertil Steril. 2009; 91(6) 2650-2663
- 96 Wei T, Geiser A G, Qian H R et al.. DNA microarray data integration by ortholog gene analysis reveals potential molecular mechanisms of estrogen-dependent growth of human uterine fibroids. BMC Womens Health. 2007; 7 5
- 97 Wei J J, Chiriboga L, Arslan A A, Melamed J, Yee H, Mittal K. Ethnic differences in expression of the dysregulated proteins in uterine leiomyomata. Hum Reprod. 2006; 21(1) 57-67
- 98 Wei J J, Chiriboga L, Mittal K. Expression profile of the tumorigenic factors associated with tumor size and sex steroid hormone status in uterine leiomyomata. Fertil Steril. 2005; 84(2) 474-484
- 99 Ahn W S, Kim K W, Bae S M et al.. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol. 2003; 84(6) 267-279
- 100 Wang H, Mahadevappa M, Yamamoto K et al.. Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata. Fertil Steril. 2003; 80(2) 266-276
- 101 Luo X, Ding L, Xu J, Chegini N. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology. 2005; 146(3) 1097-1118
- 102 Luo X, Ding L, Chegini N. CCNs, fibulin-1C and S100A4 expression in leiomyoma and myometrium: inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells. Mol Hum Reprod. 2006; 12(4) 245-256
- 103 Luo X, Pan Q, Liu L, Chegini N. Genomic and proteomic profiling II: comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars. Reprod Biol Endocrinol. 2007; 5 35
- 104 Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians. Reprod Biol Endocrinol. 2007; 5 34
- 105 Wei J J, Chiriboga L, Arslan A A, Melamed J, Yee H, Mittal K. Ethnic differences in expression of the dysregulated proteins in uterine leiomyomata. Hum Reprod. 2006; 21(1) 57-67
- 106 Chegini N, Tang X M, Ma C. Regulation of transforming growth factor-beta1 expression by granulocyte macrophage-colony-stimulating factor in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 1999; 84(11) 4138-4143
- 107 Luo X, Ding L, Xu J, Williams R S, Chegini N. Leiomyoma and myometrial gene expression profiles and their responses to gonadotropin-releasing hormone analog therapy. Endocrinology. 2005; 146(3) 1074-1096
- 108 Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004; 10(3) 207-220
- 109 Chen Q, Rabach L, Noble P et al.. IL-11 receptor alpha in the pathogenesis of IL-13-induced inflammation and remodeling. J Immunol. 2005; 174(4) 2305-2313
- 110 Fichtner-Feigl S, Young C A, Kitani A, Geissler E K, Schlitt H J, Strober W. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008; 135(6) 2003-2013
- 111 Malavia N K, Mih J D, Raub C B, Dinh B T, George S C. IL-13 induces a bronchial epithelial phenotype that is profibrotic. Respir Res. 2008; 9 27
- 112 Nishimura Y, Nitto T, Inoue T, Node K. IL-13 attenuates vascular tube formation via JAK2-STAT6 pathway. Circ J. 2008; 72(3) 469-475
- 113 Reiman R M, Thompson R W, Feng C G et al.. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun. 2006; 74(3) 1471-1479
- 114 Sugimoto R, Enjoji M, Nakamuta M et al.. Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver Int. 2005; 25(2) 420-428
- 115 Wynn T A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004; 4(8) 583-594
- 116 Yamagata S, Tomita K, Sato R, Niwa A, Higashino H, Tohda Y. Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model. Clin Exp Immunol. 2008; 154(3) 295-304
- 117 Zheng T, Oh M H, Oh S Y, Schroeder J T, Glick A B, Zhu Z. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol. 2009; 129(3) 742-751
- 118 Galkowska H, Wojewodzka U, Olszewski W L. Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen. 2006; 14(5) 558-565
- 119 Shephard P, Hinz B, Smola-Hess S, Meister J J, Krieg T, Smola H. Dissecting the roles of endothelin, TGF-beta and GM-CSF on myofibroblast differentiation by keratinocytes. Thromb Haemost. 2004; 92(2) 262-274
- 120 Kikuchi T, Shively J D, Foley J S, Drazen J M, Tschumperlin D J. Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation. Am J Physiol Lung Cell Mol Physiol. 2004; 287(1) L119-L126
- 121 Robson M C, Dubay D A, Wang X, Franz M G. Effect of cytokine growth factors on the prevention of acute wound failure. Wound Repair Regen. 2004; 12(1) 38-43
- 122 Mollah Z U, Aiba S, Nakagawa S et al.. Interleukin-3 in cooperation with transforming growth factor beta induces granulocyte macrophage colony stimulating factor independent differentiation of human CD34+hematopoietic progenitor cells into dendritic cells with features of Langerhans cells. J Invest Dermatol. 2003; 121(6) 1397-1401
- 123 Jost M M, Ninci E, Meder B et al.. Divergent effects of GM-CSF and TGFbeta1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: a potential role during arteriogenesis. FASEB J. 2003; 17(15) 2281-2283
- 124 Kelly M, Kolb M, Bonniaud P, Gauldie J. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr Pharm Des. 2003; 9(1) 39-49
- 125 Chen G, Grotendorst G, Eichholtz T, Khalil N. GM-CSF increases airway smooth muscle cell connective tissue expression by inducing TGF-beta receptors. Am J Physiol Lung Cell Mol Physiol. 2003; 284(3) L548-L556
- 126 Suzuki M, Harashima A, Okochi A et al.. Transforming growth factor-beta(1) augments granulocyte-macrophage colony-stimulating factor-induced proliferation of umbilical cord blood CD34(+) cells with an associated tyrosine phosphorylation of STAT5. Exp Hematol. 2002; 30(10) 1132-1138
- 127 Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002; 13(4-5) 413-421
- 128 Syssoev K A, Kulagina N V, Chukhlovin A B, Morozova E B, Totolian A A. Expression of mRNA for chemokines and chemokine receptors in tissues of the myometrium and uterine leiomyoma. Bull Exp Biol Med. 2008; 145(1) 84-89
- 129 Senturk L M, Sozen I, Gutierrez L, Arici A. Interleukin 8 production and interleukin 8 receptor expression in human myometrium and leiomyoma. Am J Obstet Gynecol. 2001; 184(4) 559-566
- 130 Allen G B, Cloutier M E, Larrabee Y C, Tetenev K, Smiley S T, Bates J H. Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009; 296(3) L277-L285
- 131 Smiley S T, King J A, Hancock W W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001; 167(5) 2887-2894
- 132 Doherty T, Broide D. Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol. 2007; 19(6) 676-680
- 133 Fujiwara K, Matsukawa A, Ohkawara S, Takagi K, Yoshinaga M. Functional distinction between CXC chemokines, interleukin-8 (IL-8), and growth related oncogene (GRO)alpha in neutrophil infiltration. Lab Invest. 2002; 82(1) 15-23
- 134 Galligan C L, Matsuyama W, Matsukawa A et al.. Up-regulated expression and activation of the orphan chemokine receptor, CCRL2, in rheumatoid arthritis. Arthritis Rheum. 2004; 50(6) 1806-1814
- 135 Hicks A, Monkarsh S P, Hoffman A F, Goodnow Jr R. Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments. Expert Opin Investig Drugs. 2007; 16(12) 1909-1920
- 136 Hogaboam C M, Bone-Larson C L, Steinhauser M L et al.. Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor 2. Am J Pathol. 2000; 156(4) 1245-1252
- 137 Hoshino A, Kawamura Y I, Yasuhara M et al.. Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol. 2007; 178(8) 5296-5304
- 138 Jakubzick C, Wen H, Matsukawa A, Keller M, Kunkel S L, Hogaboam C M. Role of CCR4 ligands, CCL17 and CCL22, during Schistosoma mansoni egg-induced pulmonary granuloma formation in mice. Am J Pathol. 2004; 165(4) 1211-1221
- 139 LaFleur A M, Lukacs N W, Kunkel S L, Matsukawa A. Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis. Mediators Inflamm. 2004; 13(5-6) 349-355
- 140 Matsukawa A, Hogaboam C M, Lukacs N W, Lincoln P M, Strieter R M, Kunkel S L. Endogenous MCP-1 influences systemic cytokine balance in a murine model of acute septic peritonitis. Exp Mol Pathol. 2000; 68(2) 77-84
- 141 Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock. 2004; 22(5) 460-466
- 142 Call D R, Nemzek J A, Ebong S J et al.. Differential local and systemic regulation of the murine chemokines KC and MIP2. Shock. 2001; 15(4) 278-284
- 143 Coelho A L, Schaller M A, Benjamim C F, Orlofsky A Z, Hogaboam C M, Kunkel S L. The chemokine CCL6 promotes innate immunity via immune cell activation and recruitment. J Immunol. 2007; 179(8) 5474-5482
- 144 Matsukawa A, Hogaboam C M, Lukacs N W et al.. Expression and contribution of endogenous IL-13 in an experimental model of sepsis. J Immunol. 2000; 164(5) 2738-2744
- 145 Orlofsky A, Wu Y, Prystowsky M B. Divergent regulation of the murine CC chemokine C10 by Th(1) and Th(2) cytokines. Cytokine. 2000; 12(3) 220-228
- 146 Steinhauser M L, Hogaboam C M, Matsukawa A, Lukacs N W, Strieter R M, Kunkel S L. Chemokine C10 promotes disease resolution and survival in an experimental model of bacterial sepsis. Infect Immun. 2000; 68(11) 6108-6114
- 147 Hsieh Y Y, Chang C C, Tsai F J, Lin C C, Yeh L S, Tsai C H. Tumor necrosis factor-alpha-308 promoter and p53 codon 72 gene polymorphisms in women with leiomyomas. Fertil Steril. 2004; 82(suppl 3) 1177-1181
- 148 Hsieh Y Y, Chang C C, Tsai C H, Lin C C, Tsai F J. Interleukin (IL)-12 receptor beta1 codon 378 G homozygote and allele, but not IL-1 (beta-511 promoter, 3953 exon 5, receptor antagonist), IL-2 114, IL-4-590 intron 3, IL-8 3′-UTR 2767, and IL-18 105, are associated with higher susceptibility to leiomyoma. Fertil Steril. 2007; 87(4) 886-895
- 149 Litovkin K V, Domenyuk V P, Bubnov V V, Zaporozhan V N. Interleukin-6 -174G/C polymorphism in breast cancer and uterine leiomyoma patients: a population-based case control study. Exp Oncol. 2007; 29(4) 295-298
- 150 Pietrowski D, Thewes R, Sator M, Denschlag D, Keck C, Tempfer C. Uterine leiomyoma is associated with a polymorphism in the interleukin 1-beta gene. Am J Reprod Immunol. 2009; 62(2) 112-117
- 151 Carpenter K L, van der Veen C, Taylor S E et al.. Macrophages, lipid oxidation, ceroid accumulation and alpha-tocopherol depletion in human atherosclerotic lesions. Gerontology. 1995; 41(suppl 2) 53-67
- 152 Cinel I, Opal S M. Molecular biology of inflammation and sepsis: a primer. Crit Care Med. 2009; 37(1) 291-304
- 153 Furuichi K, Gao J L, Horuk R, Wada T, Kaneko S, Murphy P M. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol. 2008; 181(12) 8670-8676
- 154 Furuichi K, Kaneko S, Wada T. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol. 2009; 13(1) 9-14
- 155 Hardwick S J, Hegyi L, Clare K et al.. Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol. 1996; 179(3) 294-302
- 156 Hodge J C, Morton C C. Genetic heterogeneity among uterine leiomyomata: insights into malignant progression. Hum Mol Genet. 2007; 16 Spec No 1 R7-13
- 157 Coraux C, Roux J, Jolly T, Birembaut P. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration. Proc Am Thorac Soc. 2008; 5(6) 689-694
- 158 Gill S E, Parks W C. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol. 2008; 40(6-7) 1334-1347
- 159 Moali C, Hulmes D J. Extracellular and cell surface proteases in wound healing: new players are still emerging. Eur J Dermatol. 2009; 19(6) 552-564
- 160 Page-McCaw A, Ewald A J, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007; 8(3) 221-233
- 161 Ra H J, Parks W C. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007; 26(8) 587-596
- 162 Toriseva M, Kähäri V M. Proteinases in cutaneous wound healing. Cell Mol Life Sci. 2009; 66(2) 203-224
- 163 Behera M A, Feng L, Yonish B, Catherino W, Jung S H, Leppert P. Thrombospondin-1 and thrombospondin-2 mRNA and TSP-1 and TSP-2 protein expression in uterine fibroids and correlation to the genes COL1A1 and COL3A1 and to the collagen cross-link hydroxyproline. Reprod Sci. 2007; 14(8, suppl) 63-76
- 164 Dou Q, Tarnuzzer R W, Williams R S, Schultz G S, Chegini N. Differential expression of matrix metalloproteinases and their tissue inhibitors in leiomyomata: a mechanism for gonadotrophin releasing hormone agonist-induced tumour regression. Mol Hum Reprod. 1997; 3(11) 1005-1014
- 165 Ma C, Chegini N. Regulation of matrix metalloproteinases (MMPs) and their tissue inhibitors in human myometrial smooth muscle cells by TGF-beta1. Mol Hum Reprod. 1999; 5(10) 950-954
- 166 Palmer S S, Haynes-Johnson D, Diehl T, Nowak R A. Increased expression of stromelysin 3 mRNA in leiomyomas (uterine fibroids) compared with myometrium. J Soc Gynecol Investig. 1998; 5(4) 203-209
- 167 Takemura N, Yoshida S, Kennedy S, Deguchi M, Ohara N, Maruo T. Matrix metalloproteinase-1 and -9 promoter polymorphisms are not associated with an increased risk of uterine leiomyomas in a Japanese population. J Soc Gynecol Investig. 2006; 13(3) 232-236
- 168 Wolańska M, Sobolewski K, Bańkowski E, Jaworski S. Matrix metalloproteinases of human leiomyoma in various stages of tumor growth. Gynecol Obstet Invest. 2004; 58(1) 14-18
- 169 Byrne A M, Bouchier-Hayes D J, Harmey J H. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005; 9(4) 777-794
- 170 Hickey M M, Simon M C. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol. 2006; 76 217-257
- 171 Knowles J, Loizidou M, Taylor I. Endothelin-1 and angiogenesis in cancer. Curr Vasc Pharmacol. 2005; 3(4) 309-314
- 172 Kopp H G, Ramos C A, Rafii S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol. 2006; 13(3) 175-181
- 173 Murdoch C, Muthana M, Lewis C E. Hypoxia regulates macrophage functions in inflammation. J Immunol. 2005; 175(10) 6257-6263
- 174 Rodriguez P G, Felix F N, Woodley D T, Shim E K. The role of oxygen in wound healing: a review of the literature. Dermatol Surg. 2008; 34(9) 1159-1169
- 175 Sen C K. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009; 17(1) 1-18
- 176 Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct. 2001; 26(1) 25-35
- 177 Arnout J, Hoylaerts M F, Lijnen H R. Haemostasis. Handb Exp Pharmacol. 2006; (176 Pt 2) 1-41
- 178 Fichtner-Feigl S, Strober W, Geissler E K, Schlitt H J. Cytokines mediating the induction of chronic colitis and colitis-associated fibrosis. Mucosal Immunol. 2008; 1(suppl 1) S24-S27
- 179 Fujimoto H, Gabazza E C, Taguchi O et al.. Thrombin-activatable fibrinolysis inhibitor deficiency attenuates bleomycin-induced lung fibrosis. Am J Pathol. 2006; 168(4) 1086-1096
- 180 Galkowska H, Wojewodzka U, Olszewski W L. Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen. 2006; 14(5) 558-565
- 181 Johnson L L, Berggren K N, Szaba F M, Chen W, Smiley S T. Fibrin-mediated protection against infection-stimulated immunopathology. J Exp Med. 2003; 197(6) 801-806
- 182 Wolberg A S. Thrombin generation and fibrin clot structure. Blood Rev. 2007; 21(3) 131-142
- 183 Cross M J, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001; 22(4) 201-207
- 184 Lijnen H R. Metalloproteinases in development and progression of vascular disease. Pathophysiol Haemost Thromb. 2003; 33(5-6) 275-281
- 185 Margosio B, Rusnati M, Bonezzi K et al.. Fibroblast growth factor-2 binding to the thrombospondin-1 type III repeats, a novel antiangiogenic domain. Int J Biochem Cell Biol. 2008; 40(4) 700-709
- 186 Owen C A. Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization. Int J Biochem Cell Biol. 2008; 40(6-7) 1246-1272
- 187 Petreaca M L, Yao M, Ware C, Martins-Green M M. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT). Wound Repair Regen. 2008; 16(5) 602-614
- 188 de Caestecker M. de CM . The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004; 15(1) 1-11
- 189 Hyytiäinen M, Penttinen C, Keski-Oja J. Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci. 2004; 41(3) 233-264
- 190 Barcellos-Hoff M H, Akhurst R J. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res. 2009; 11(1) 202
- 191 Gauldie J, Bonniaud P, Sime P, Ask K, Kolb M. TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans. 2007; 35(Pt 4) 661-664
- 192 Gharaee-Kermani M, Hu B, Phan S H, Gyetko M R. Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGFbeta signaling and the myofibroblast. Curr Med Chem. 2009; 16(11) 1400-1417
- 193 Goodwin A, Jenkins G. Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans. 2009; 37(Pt 4) 849-854
- 194 Goumans M J, van Zonneveld A J, ten Dijke P. Transforming growth factor beta-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis?. Trends Cardiovasc Med. 2008; 18(8) 293-298
- 195 Leivonen S K, Kähäri V M. Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer. 2007; 121(10) 2119-2124
- 196 Matsuzaki K. Modulation of TGF-beta signaling during progression of chronic liver diseases. Front Biosci. 2009; 14 2923-2934
- 197 Moustakas A, Heldin C H. The regulation of TGFbeta signal transduction. Development. 2009; 136(22) 3699-3714
- 198 Pardali E, ten Dijke P. Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci. 2009; 14 4848-4861
- 199 Pohlers D, Brenmoehl J, Löffler I et al.. TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta. 2009; 1792(8) 746-756
- 200 Schnaper H W, Jandeska S, Runyan C E et al.. TGF-beta signal transduction in chronic kidney disease. Front Biosci. 2009; 14 2448-2465
- 201 Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009; 5(4) 200-206
- 202 Wu M Y, Hill C S. TGF-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009; 16(3) 329-343
- 203 Byfield S D, Roberts A B. Lateral signaling enhances TGF-beta response complexity. Trends Cell Biol. 2004; 14(3) 107-111
- 204 Derynck R, Zhang Y E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425(6958) 577-584
- 205 ten Dijke P, Hill C S. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004; 29(5) 265-273
- 206 Siegel P M, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003; 3(11) 807-821
- 207 Cummings J, Ward T H, Ranson M, Dive C. Apoptosis pathway-targeted drugs—from the bench to the clinic. Biochim Biophys Acta. 2004; 1705(1) 53-66
- 208 Hengartner M O. The biochemistry of apoptosis. Nature. 2000; 407(6805) 770-776
- 209 Arici A, Sozen I. Expression, menstrual cycle-dependent activation, and bimodal mitogenic effect of transforming growth factor-beta1 in human myometrium and leiomyoma. Am J Obstet Gynecol. 2003; 188(1) 76-83
- 210 Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003; 209(1–2) 9-16
- 211 Dou Q, Zhao Y, Tarnuzzer R W et al.. Suppression of transforming growth factor-beta (TGF beta) and TGF beta receptor messenger ribonucleic acid and protein expression in leiomyomata in women receiving gonadotropin-releasing hormone agonist therapy. J Clin Endocrinol Metab. 1996; 81(9) 3222-3230
- 212 Dou Q, Williams R S, Chegini N. Inhibition of transforming growth factor-beta 1 alters the growth, anchor-dependent cell aggregation and integrin mRNA expression in human promonocytes: implications for endometriosis and peritoneal adhesion formation. Mol Hum Reprod. 1997; 3(5) 383-391
- 213 Luo X, Ding L, Xu J, Chegini N. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology. 2005; 146(3) 1097-1118
- 214 Tang X M, Dou Q, Zhao Y, McLean F, Davis J, Chegini N. The expression of transforming growth factor-beta s and TGF-beta receptor mRNA and protein and the effect of TGF-beta s on human myometrial smooth muscle cells in vitro. Mol Hum Reprod. 1997; 3(3) 233-240
- 215 Xu J, Luo X, Chegini N. Differential expression, regulation, and induction of Smads, transforming growth factor-beta signal transduction pathway in leiomyoma, and myometrial smooth muscle cells and alteration by gonadotropin-releasing hormone analog. J Clin Endocrinol Metab. 2003; 88(3) 1350-1361
- 216 Blobe G C, Schiemann W P, Lodish H F. Role of transforming growth factor beta in human disease. N Engl J Med. 2000; 342(18) 1350-1358
- 217 Hua Z, Lv Q, Ye W et al.. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006; 1 e116
- 218 Ihn H. Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008; 49(2) 103-113
- 219 Yu L, Border W A, Huang Y, Noble N A. TGF-beta isoforms in renal fibrogenesis. Kidney Int. 2003; 64(3) 844-856
- 220 Barbarisi A, Petillo O, Di Lieto A et al.. 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol. 2001; 186(3) 414-424
- 221 Rossi M J, Chegini N, Masterson B J. Presence of epidermal growth factor, platelet-derived growth factor, and their receptors in human myometrial tissue and smooth muscle cells: their action in smooth muscle cells in vitro. Endocrinology. 1992; 130(3) 1716-1727
- 222 Laping N J, Everitt J I, Frazier K S et al.. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 2007; 13(10) 3087-3099
- 223 Norwitz E R, Xu S, Xu J et al.. Direct binding of AP-1 (Fos/Jun) proteins to a SMAD binding element facilitates both gonadotropin-releasing hormone (GnRH)- and activin-mediated transcriptional activation of the mouse GnRH receptor gene. J Biol Chem. 2002; 277(40) 37469-37478
- 224 Norwitz E R, Xu S, Jeong K H et al.. Activin A augments GnRH-mediated transcriptional activation of the mouse GnRH receptor gene. Endocrinology. 2002; 143(3) 985-997
- 225 Ahn W S, Kim K W, Bae S M et al.. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol. 2003; 84(6) 267-279
- 226 Quade B J, Wang T Y, Sornberger K, Dal Cin P, Mutter G L, Morton C C. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer. 2004; 40(2) 97-108
- 227 Tsibris J C, Segars J, Coppola D et al.. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril. 2002; 78(1) 114-121
- 228 Wang H, Mahadevappa M, Yamamoto K et al.. Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata. Fertil Steril. 2003; 80(2) 266-276
- 229 Weston G, Trajstman A C, Gargett C E, Manuelpillai U, Vollenhoven B J, Rogers P A. Fibroids display an anti-angiogenic gene expression profile when compared with adjacent myometrium. Mol Hum Reprod. 2003; 9(9) 541-549
- 230 Leask A, Abraham D J. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006; 119(Pt 23) 4803-4810
- 231 Leask A. Targeting the TGFbeta, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell Signal. 2008; 20(8) 1409-1414
- 232 Joseph D S, Malik M, Nurudeen S, Catherino W H. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril. 2009; , March 26 (Epub ahead of print)
- 233 Tsou R, Cole J K, Nathens A B et al.. Analysis of hypertrophic and normal scar gene expression with cDNA microarrays. J Burn Care Rehabil. 2000; 21(6) 541-550
- 234 Leahy D J. Structure and function of the epidermal growth factor (EGF/ErbB) family of receptors. Adv Protein Chem. 2004; 68 1-27
- 235 Leu T H, Maa M C. Functional implication of the interaction between EGF receptor and c-Src. Front Biosci. 2003; 8 s28-s38
- 236 Iwamoto R, Mekada E. Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev. 2000; 11(4) 335-344
- 237 Carpenter G. The EGF receptor: a nexus for trafficking and signaling. Bioessays. 2000; 22(8) 697-707
- 238 Bonner J C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004; 15(4) 255-273
- 239 Yu J, Ustach C, Kim H R. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol. 2003; 36(1) 49-59
- 240 Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev. 2003; 14(2) 91-98
- 241 Vegeto E, Ghisletti S, Meda C, Etteri S, Belcredito S, Maggi A. Regulation of the lipopolysaccharide signal transduction pathway by 17beta-estradiol in macrophage cells. J Steroid Biochem Mol Biol. 2004; 91(1–2) 59-66
- 242 Moro L, Reineri S, Piranda D et al.. Nongenomic effects of 17beta-estradiol in human platelets: potentiation of thrombin-induced aggregation through estrogen receptor beta and Src kinase. Blood. 2005; 105(1) 115-121
- 243 Brekken R A, Sage E H. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 2001; 19(8) 816-827
- 244 Di Lieto A, De Rosa G, De Falco M et al.. Relationship between platelet-derived growth factor expression in leiomyomas and uterine volume changes after gonadotropin-releasing hormone agonist treatment. Hum Pathol. 2002; 33(2) 220-224
- 245 Heldin C H. Development and possible clinical use of antagonists for PDGF and TGF-beta. Ups J Med Sci. 2004; 109(3) 165-178
- 246 LeRoith D, Roberts Jr C T. The insulin-like growth factor system and cancer. Cancer Lett. 2003; 195(2) 127-137
- 247 Firth S M, Baxter R C. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002; 23(6) 824-854
- 248 Gentry C C, Okolo S O, Fong L F, Crow J C, Maclean A B, Perrett C W. Quantification of vascular endothelial growth factor-A in leiomyomas and adjacent myometrium. Clin Sci (Lond). 2001; 101(6) 691-695
- 249 Böttcher R T, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005; 26(1) 63-77
- 250 Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004; 131(24) 6009-6021
- 251 Wu X, Blanck A, Olovsson M, Möller B, Lindblom B. Expression of basic fibroblast growth factor (bFGF), FGF receptor 1 and FGF receptor 2 in uterine leiomyomas and myometrium during the menstrual cycle, after menopause and GnRHa treatment. Acta Obstet Gynecol Scand. 2001; 80(6) 497-504
- 252 Taylor C V, Letarte M, Lye S J. The expression of integrins and cadherins in normal human uterus and uterine leiomyomas. Am J Obstet Gynecol. 1996; 175(2) 411-419
- 253 Chegini N, Kornberg L. Gonadotropin releasing hormone analogue therapy alters signal transduction pathways involving mitogen-activated protein and focal adhesion kinases in leiomyoma. J Soc Gynecol Investig. 2003; 10(1) 21-26
- 254 Fanayan S, Firth S M, Baxter R C. Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-beta 1 signaling. J Biol Chem. 2002; 277(9) 7255-7261
- 255 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2) 281-297
- 256 Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009; 218(3) 467-472
- 257 Calin G A, Pekarsky Y, Croce C M. The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol. 2007; 20(3) 425-437
- 258 Luo X, Chegini N. The expression and potential regulatory function of microRNAs in the pathogenesis of leiomyoma. Semin Reprod Med. 2008; 26(6) 500-514
- 259 Wang T, Zhang X, Obijuru L et al.. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007; 46(4) 336-347
- 260 Tili E, Croce C M, Michaille J J. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009; 28(5) 264-284
- 261 Tili E, Michaille J J, Cimino A et al.. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007; 179(8) 5082-5089
- 262 Tili E, Michaille J J, Costinean S, Croce C M. MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol. 2008; 4(10) 534-541
- 263 Chegini N, Zhao Y, Williams R S, Flanders K C. Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, TGF beta 3, and TGF beta type II receptor messenger ribonucleic acid and protein and contains [125I]TGF beta 1-binding sites. Endocrinology. 1994; 135(1) 439-449
- 264 Chegini N, Ma C, Tang X M, Williams R S. Effects of GnRH analogues, ‘add-back’ steroid therapy, antiestrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-beta expression. Mol Hum Reprod. 2002; 8(12) 1071-1078
Nasser CheginiPh.D.
Professor, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology
University of Florida, Gainesville, FL, 32610
Email: cheginin@ufl.edu