Homœopathic Links 2011; 24(2): 97-105
DOI: 10.1055/s-0030-1250712
MATERIA MEDICA AND CASES

© Sonntag Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Autism – A Three Stage Approach

Anton van Rhijn United Kingdom
Further Information

Publication History

Publication Date:
25 May 2011 (online)

Summary

This is an article about the complex issues involved in treating autistic children holistically. It covers a synopsis of the basic biochemistry going askew and suggests simplified dietary and nutritional interventions. Two case examples follow to illustrate completion of the treatment with well-chosen homeopathic remedies to stimulate the body's healing mechanisms finally out of the autistic expression.

References

  • 1 Jepson B. Changing the Course of Autism: a scientific Approach for Parents and Physicians. Boulder: Sentient Publications; 2007
  • 2 Hertz-Picciotto I, Delwiche L. The rise in autism and the role of age at diagnosis.  Epidemiology. 2009;  20 622-623
  • 3 Buxbaum J. Multiple rare variants in the etiology of autistic spectrum disorders.  Dialogues Clin Neurosci. 2009;  11 35-43
  • 4 Folstein S, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder.  Nature Review Genetics. 2001;  2 943-955
  • 5 Steyaert J, De La Marche W. What's new in autism?.  Eur J Pediatr. 2008;  167 1091-1101
  • 6 Larsson H J, Eaton W W, Madsen K M et al. Risk factors for autism: perinatal factors, parental psychiatric history and socioeconomic status.  Am J Epidemiol. 2005;  101 916-925
  • 7 Palkovicova L et al. Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn.  J Expo Sci Environ Epidemiol. 2008;  18 326-331
  • 8 Geier D et al. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity.  Acta Neurobiol Exp. 2009;  69 189-197
  • 9 Bradstreet J et al. A case control study of mercury burden in children with autistic spectrum disorders.  J Am Phys and Surg. 2003;  8 76-79
  • 10 Desoto M et al. Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set.  J Child Neurol. 2007;  22 1308-1311
  • 11 Adams J et al. Mercury, lead and zinc in baby teeth of children with autism compared to controls.  J Toxicol Environ Health Part A. 2007;  70 1046-1051
  • 12 Nataf R et al. Porphyrinuria in childhood autistic disorder: implications for environmental toxicity.  Toxicol Appl Pharmacol. 2006;  214 99-108
  • 13 Gayle C et al. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay Area.  Environ Health Perspect. 2006;  114 1438-1444
  • 14 Nelson K, Bauman M. Thimerosal and autism?.  Pediatrics. 2003;  111 674-679
  • 15 DeStefano F et al. Age at first measles-mumps-rubella vaccination in children with autism and school-matched control subjects: a population-based study in metropolitan Atlanta.  Pediatrics. 2004;  113 259-266
  • 16 Richler J et al. Is there a “regressive phenotype” of autistism spectrum disorder associated with the measles-mumps-rubella vaccine? A CPEA study.  J Autism Dev Dis. 2006;  36 299-316
  • 17 Fombonne E. The prevalence of autism.  JAMA. 2003;  45 731-738
  • 18 Levisohn P. The autism-epilepsy connection.  Epilepsia. 2007;  48 (Suppl. 9) 33-35
  • 19 Kanner L. Autistic disturbances of affective contact.  Nerv Child. 1943;  2 217-250
  • 20 Dapretto M et al. Understanding emotions in others: mirror dysfunction in children with autism spectrum disorders.  Nature Neuroscience. 2006;  9 28-30
  • 21 Baron-Cohen S et al. Does the autistic child have a theory of mind?.  Cognition. 1985;  21 37-46
  • 22 Ferrante P et al. Significant association of HLA A2-DR11 with CD4 naïve decrease in autistic children.  Biomed Pharmacother. 2003;  57 372-374
  • 23 Warren R et al. Deficiency of suppressor-inducer (CD4+CD45RA+) T cells in autism.  Immunol Invest. 1990;  19 245-251
  • 24 Yonk L et al. CD4+ helper T cell depression in autism.  Immunol Lett. 1990;  25 341-345
  • 25 Malloy C et al. Elevated cytokines in children with autistic spectrum disorder.  J Neuroimmunol. 2006;  172 198-205
  • 26 Jyonouchi H et al. Pro-inflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression.  Journal of Neuroimmunology. 2001;  120 170-179
  • 27 Jyonouchi H et al. Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship with gastrointestinal symptoms and dietary intervention.  Neuropsychobiology. 2005;  51 77-85
  • 28 Torrente F et al. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism.  Mol Psychiatry. 2002;  7 378-382
  • 29 Ashwood P et al. Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10.  J Clin Immunol. 2004;  24 664-673
  • 30 Ashwood P et al. Intestinal lymphocyte populations in children with regressive autism: evidence for extensive mucosal immunopathology.  J Clin Immunol. 2003;  23 504-516
  • 31 Wakefield A et al. Ileal-lymphoid nodular hyperplasia, non specific colitis, and developmental disorder in children.  Lancet. 1998;  351 637-641
  • 32 Cosford R. Vaccination, early infections; antibiotic use and the connection with gastrointestinal dysbiosis and autism in children. Lecture at Autism-Europe Congress, Glasgow, May 2000
  • 33 D'Eufemia P et al. Abnormal intestinal permeability in children with autism.  Acta Paediatrica. 1996;  85 1076-1079
  • 34 Waring R, Klovrza L. Sulphur metabolism in autism.  J Nutr Envir Med. 2000;  10 25-32
  • 35 Song Y et al. Real-time PCR quantitation of Clostridia in feces of autistic children.  Applied and Environmental Microbiology. 2004;  7 6459-6465
  • 36 Campbell-McBride N. Gut and Psychology Syndrome. Cambridge: Medinform Publishing; 2004
  • 37 Richardson A. Fatty acid metabolism in neurodevelopmental disorder: a new perspective on association between ADHD, dyslexia, dyspraxia, and the autistic spectrum. Prostaglandins.  Leucot E Fatty Acids. 2000;  63 1-9
  • 38 Reicheld K et al. Possible role of peptides, exorphins and serotonin uptake stimulating peptides in autism. Conference proceedings from “Living and Learning with Autism” University of Durham; 1997: 221-231
  • 39 Vojdani A et al. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism.  Nutr Neurosci. 2004;  7 151-161
  • 40 Shattock P, Lowdon G. Proteins, peptides and autism. Part 2: Implications for the education and care of people with autism.  Brain Dysfunction. 1991;  4 323-334
  • 41 Shattock P et al. Role of neuropeptides in autism and their relationship with classical neurotransmitters.  Brain Dysfunction. 1990;  3 328-345
  • 42 Whiteley P et al. A gluten-free diet as an intervention for autism and associated spectrum disorders: preliminary findings.  Autism. 1999;  3 45
  • 43 Knivsberg A M et al. Dietary intervention in autistic syndromes.  Brain Dysfunction. 1990;  3 315-317
  • 44 Knivsberg A M et al. Autistic syndromes and diet: a follow-up study.  Scand J Edu Res. 1995;  39 223-236
  • 45 Knivsberg A M et al. A randomised, controlled study of dietary intervention in autistic syndromes.  Nutr Neurosci. 2002;  5 251-261
  • 46 Waring R, Ngong J. Sulphate metabolism in allergy induced autism: relevance to disease aetiology. Conference proceedings from Biological perspectives in autism University of Durham; 1993: 35-44
  • 47 Alberti A et al. A sulphation deficit in autistic children: a pilot study.  Biological Psychiatry. 1999;  8 420-424
  • 48 Deth R et al. How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis.  Neurotoxicology. 2008;  29 190-201
  • 49 Muravchick S, Levy R J. Clinical implications of mitochondrial dysfunction.  Anesthesiology. 2006;  105 819-837
  • 50 Rossignol D, Bradstreet J. Evidence of mitochondrial dysfunction in autism and implications for treatment.  Am J Biochem & Technol. 2008;  4 208-217
  • 51 Sajdel-Sulkowska E et al. Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels.  Am J Biochem & Technol. 2008;  4 73-84
  • 52 Chauhan A et al. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferring – the antioxidant proteins.  Life Sci. 2004;  75 2539-2549
  • 53 James S et al. Metabolic markers of increased oxidative stress and impaired methylation capacity in children with autism.  Am J Clin Nutr. 2004;  80 1611-1617
  • 54 Ischiropoulos H, Beckman J S. Oxidative stress and nitration in neurodegeneration: cause, effect or association?.  J Clin Invest. 2003;  111 163-169
  • 55 Kern J K, Jones A M. Evidence of toxicity, oxidative stress and neuronal insult in autism.  J Toxicol Environ Health B Crit Rev. 2006;  9 485-499
  • 56 James S et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism.  Am J Med Genet B Neuropsychiatr Genet. 2006;  141 947-956
  • 57 Vargas D et al. Neuronal activation and neuroinflammation in the brain of patients with autism.  Ann Neurol. 2005;  57 67-81
  • 58 Connolly A et al. Brain-derived neurotrophic factor and autoantibodies to neuronal antigens in sera of children with Autistic Spectrum Disorders, Landau-Kleffner Syndrome and Epilepsy.  Biol Psych. 2006;  59 354-363
  • 59 Geier D et al. Biomarkers of environmental toxicity and susceptibility in autism.  J Neurol Sci. 2009;  280 101-108
  • 60 Bull G et al. Indol-3-acryloylglycine (IAG) is a putative diagnostic urinary marker for autism spectrum disorders.  Medical Science Monitor. 2003;  9 CR422-CR425
  • 61 Nataf R et al. Porphyrinuria in childhood autistic disorder: implications for environmental toxicity.  Toxicol Appl Pharmacol. 2006;  214 99-108
  • 62 Messahel S et al. Urinary levels of neopterin and biopterin in autism.  Neuroscience Letters. 1998;  241 17-20
  • 63 Sharpe D, Baker D. Financial issues associated with having a child with autism.  J Fam Econ Iss. 2007;  28 246-264
  • 64 Ganz M. The lifetime distribution of the incremental societal costs of autism.  Arch Pediatr Adolesc Med. 2007;  161 343-349
  • 65 Rimland B. The DAN Protocol. San Diego, USA: The Autism Research Institute; 1995
  • 66 Shattock P, Whiteley P. The Sunderland Protocol. Autism Research Unit, University of Sunderland, UK; 2000
  • 67 Allan C, Lutz W. Life without Bread – How a Low-Carbohydrate Diet can save your Life. Los Angeles: Keats Publishing; 2000
  • 68 Baic S, Denby N. Living Gluten-Free for Dummies. Chichester: John Wiley & Sons; 2007
  • 69 Gottschall E. Breaking the vicious Cycle: Intestinal Health through Diet. Baltimore, Ontario: Kirkton Press Ltd.; 1994
  • 70 van der Hulst R et al. Glutamine and the preservation of gut integrity.  Lancet. 1993;  341 1363-1365
  • 71 DeFelice K. Enzymes for Autism and other neurological Conditions. 3rd ed. Johnston, IA: Thundersnow Interactive; 2003
  • 72 James S et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism.  Am J Clin Nutr. 2009;  89 1-6

Dr. Anton van Rhijn, MSc, MD, FFHom

Heggeli Helhetsmedisin

Heggelibakken 2

0375 Oslo

Norway

Email: anton.rhijn@gmail.com