Zusammenfassung
Hintergrund: Beckenringfrakturen sind kombinierte knöchern-ligamentäre Verletzungen und werden anhand der unfallbedingten Krafteinwirkung klassifiziert. Anamnestische, klinische und radiologische Kriterien sind zur Diagnosefindung notwendig. Ziel aller Stabilisierungsarten ist die optimale Rekonstruktion des knöchernen Beckenrings, der mitverletzte Bandapparat wird indirekt beachtet. Klinische Studien kamen zum Schluss, dass bei „open book“-Verletzungen diese Weichteilverletzungen für das schlechte klinische Outcome verantwortlich sein können. Ziel der Arbeit war es, durch Simulationen mit einem realistischen Finite-Elemente-(FE-)Computermodell posttraumatische Instabilitäten einer „open book“-Verletzung vorherzusagen und in die Osteosyntheseplanung einzubeziehen. Patienten/Material: Es wurde ein komplettes FE-Modell des Beckenrings auf Basis eines CT-Datensatzes entwickelt. Die geometrischen Abmessungen des Bandapparats wurden durch eigene anatomische Studien exakt nachgebildet. Mit Parameterstudien wurde der Einfluss einzelner Bandgruppen auf Verschiebungen im vorderen und hinteren Beckenring gemessen. Weiterhin erfolgten die Simulation einer „open book“-Verletzung hinsichtlich des möglichen ligamentären Verletzungsumfangs sowie die biomechanische Validierung durch Bruchversuche an Kadaverbecken. Ergebnisse: Der Bandapparat des Beckens dient entscheidend dem Erhalt der Stabilität, wobei einzelne Bandgruppen spezielle lokal stabilisierende Funktionen innehaben, aber auch mit anderen Gruppen funktionell verzahnt sind. Wesentlich wird der vertikale Lastabtrag durch die Bänder des Beckenbodens, der horizontale durch die Bänder im hinteren Beckenring gesichert. Bei „open book“-Verletzungen kommt es zu einer schrittweisen Ruptur aller Bandstrukturen, wobei eine wesentliche Instabilität mit 2 Rotationsachsen erst bei Durchtrennung der Bänder im hinteren Beckenring entsteht. In diesem Fall sollte neben der Rekonstruktion der Symphyse auch eine Stabilisierung im hinteren Beckenring erfolgen. Schlussfolgerungen: Numerische Simulationen an FE-Modellen können posttraumatische Instabilitäten vorhersagen. Jedoch ist aufgrund des inkompletten Datenmaterials zur Erstellung patientenspezifischer Beckenmodelle eine Implementierung in die klinische Praxis noch nicht realistisch.
Abstract
Background: Instability of pelvic ring fractures is also caused by ligament disruption. Classifications are based on the major forces leading to fracture. Data from injury mechanisms as well as clinical and radiological criteria are used to determine the degree of instability. The major aim of all kinds of stabilisation is the anatomic reconstruction of the bony pelvic ring. The injured ligamentous apparatus is still ignored. Some clinical trials assume that soft-tissue injuries may be the reason for the poor patient outcome in “open book” pelvic ring fractures. The aim of the study was to develop a realistic finite element (FE) computer model to simulate “open book” fractures and predict injury-associated instabilities for osteosynthesis planning. Patients/Material: We developed a realistic FE computer model of the pelvic ring based on CT data. With anatomic studies a computer model of the ligamentous apparatus was created and inserted into the pelvic ring to complete the bone-ligament complex. Numerical simulations were performed to identify the influence of single pelvic ligaments on the shifting at the intact anterior and posterior pelvic ring. Additionally, a biomechanical validated virtual crack simulation with anterior-posterior compression forces was undertaken to predict complex instabilities in “open book” pelvic ring fractures. Results: The pelvic ligaments have local and general stabilising functions. The sacrospinous and sacrotuberous ligaments are providing the vertical load transfer, whereas the ligaments of the iliosacral joint and the iliolumbal ligament are necessary for the horizontal load transfer. In “open book” fractures ligaments are ruptured stepwise from anterior to posterior. If the intraosseous and posterior ligaments of the iliosacral joint are intact, only single rotational instability along the ipsilateral iliosacral joint occurs. If the ligaments at the posterior pelvic ring are ruptured too, a second axis across both iliosacral joints was measured. In this particular case additional stabilisation of the posterior pelvic ring should be performed. Conclusion: With numerical simulations, prediction of injury-associated instabilities is possible. Because of incomplete radiological data the implementation of patient-specific FE pelvic computer models into the clinical routine is still not realistic.
Schlüsselwörter
finite Elemente - Bruchversuch - Beckenring
Key words
finite element - crack simulation - pelvic ring
Literatur
1
Pennal G F, Tile M, Waddel J P et al.
Pelvic disruption: assessment and classification. Clin.
Orthop Relat Res.
1980;
151
12-21
2
Linnau K F, Blackmore C C, Kaufman R et al.
Do initial radiographs agree with crash side mechanism of injury in pelvic ring disruptions? A pilot study.
J Orthop Trauma.
2007;
21
375-380
3
Sauerland S, Bouillon B, Rixen D et al.
The reliability of clinical examination in detecting pelvic fractures in blunt trauma patients: a meta-analysis.
Arch Orthop Trauma Surg.
2004;
124
123-128
4
Shlamovitz G Z, Mower W R, Bergman J et al.
How (un)useful is the pelvic ring stability examination in diagnosing mechanically unstable pelvic fractures in blunt trauma patients?.
J Trauma.
2009;
66
815-820
5
Rommens P M, Gercek E, Hansen M et al.
Mortality, morbidity and functional outcome after open book and lateral compression lesions of the pelvic ring. A retrospective analysis of 100 type B pelvic ring lesions according to Tile's classification.
Unfallchirurg.
2003;
106
542-549
6
Garcia J, Doblare M, Seral B et al.
Three-dimensional finite element analysis of several internal and external pelvis fixations.
J Biomech Eng.
2000;
122
516-522
7
Anderson A, Peters C, Tuttle B et al.
Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
J Biomech Eng.
2005;
127
364-373
8
Shim V, Pitto R, Streicher R et al.
The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
J Biomech.
2007;
40
26-35
9
Phillips A T, Pankaj P, Howie C R et al.
Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions.
Med Eng Phys.
2007;
29
739-748
10
Böhme J, Hülse R, Klima S et al.
Development of a biomechanics validated finite element model of the pelvis.
J Biomech.
2006;
39 (Suppl. 1)
S572
11
Wirtz D C, Schiffers N, Pandorf T et al.
Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.
J Biomech.
2000;
33
1325-1330
12
Birnbaum K, Sindelar R, Gärtner J R et al.
Material properties of trabecular bone structures.
Surg Radiol Anat.
2001;
23
399-407
13
Abendschein W, Hyatt G W.
Ultrasonics and selected physical properties of bone.
Clin Orthop Relat Res.
1970;
69
294-301
14
Carter D R, Smith D J, Spengler D M et al.
Measurement and analysis of in vivo bone strains on the canine radius and ulna.
J Biomech.
1980;
13
27-38
15
Ciarelli M J, Goldstein S A, Kuhn J L et al.
Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography.
J Orthop Res.
1991;
9
674-682
16
Knauss P.
[Material properties and strength behavior of the compact bone tissue at the coxal human-femur (author's transl)].
Biomed Tech (Berlin).
1981;
26
311-315
17
Knauss P.
[Material properties and strength behaviour of spongy bone tissue at the coxal human femur (author's transl)].
Biomed Tech (Berlin).
1981;
26
200-210
18
Lotz J C, Gerhart T N, Hayes W C.
Mechanical properties of metaphyseal bone in the proximal femur.
J Biomech.
1991;
24
317-329
19
Mittra E.
Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone.
J Biomech.
2005;
38
1229-1237
20
Thompson M S, Flivik G, Juliusson R et al.
A comparison of structural and mechanical properties in cancellous bone from the femoral head and acetabulum.
Proc Inst Mech Eng [H].
2004;
218
425-429
21
Anderson A E.
A subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
J Biomech Eng.
2005;
127
364-373
22 Anderson A E. Development and validation of a finite element model of the pelvis. In ASME International Washington: Mechanical Engineering Congress & Exposition 2003
23
Phillips A T, Pankaj P, Howie C R et al.
Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions.
Med Eng Phys.
2007;
29
739-748
24
Phillips A T, Pankaj P, Howie C R et al.
3D non-linear analysis of the acetabular construct following impaction grafting.
Comput Methods Biomech Biomed Engin.
2006;
9
125-133
25
Li Z, Kim J E, Davidson J S et al.
Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study.
J Biomech.
2007;
40
2758-2766
27
Little R B, Wevers H W, Siu D et al.
A three-dimensional finite element analysis of the upper tibia.
J Biomech Eng.
1986;
108
111-119
28
Li Z et al.
Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.
Ann Biomed Eng.
2006;
34
1452-1462
29
Hammer N, Steinke H, Slowik V et al.
The sacrotuberous and the sacrospinous ligament – a virtual reconstruction.
Ann Anat.
2009;
191
417-421
30
Steinke H, Hammer N, Slowik V et al.
Novel insights into the sacroiliac joint ligaments.
Spine (Phila Pa 1976).
2010;
35
257-263
31
Hammer N, Steinke H, Böhme J et al.
Description of the iliolumbar ligament for computer-assisted reconstruction.
Ann Anat.
2010;
192
162-167
32
MacAvoy M C, McClellan R T, Goodman S B et al.
Stability of open-book pelvic fractures using a new biomechanical model of single-limb stance.
J Orthop Trauma.
1997;
11
590-593
33
Burgess A R, Eastridge B J, Young J W et al.
Pelvic ring disruptions: effective classification system and treatment protocols.
J Trauma.
1990;
30
848-856
34
Simonian P T, Routt Jr M L, Harrington R M et al.
Biomechanical simulation of the anteroposterior compression injury of the pelvis. An understanding of instability and fixation.
Clin Orthop Relat Res.
1994;
309
245-256
35
Vrahas M, Hern T C, Diangelo D et al.
Ligamentous contributions to pelvic stability.
Orthopedics.
1995;
18
271-274
36
Puhakka K B, Melsen F, Jurik A G et al.
MR imaging of the normal sacroiliac joint with correlation to histology.
Skeletal Radiol.
2004;
33
15-28
Dr. Jörg Böhme
Klinik für Unfall-, Wiederherstellungs- und Plastische Chirurgie Universitätsklinikum Leipzig
Liebigstraße 20
04103 Leipzig
Phone: 0341/9717385
Fax: 0341/9717302
Email: joerg.boehme@medizin.uni-leipzig.de