Planta Med 2010; 76(16): 1794-1801
DOI: 10.1055/s-0030-1250236
Perspectives
© Georg Thieme Verlag KG Stuttgart · New York

Molecular Targets of Natural Drug Substances: Idiosyncrasies and Preferences

Peter Imming1
  • 1Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
Further Information

Publication History

received April 29, 2010 revised July 8, 2010

accepted July 13, 2010

Publication Date:
17 August 2010 (online)

Abstract

All creatures – bacteria, plants, animals, humans – have many building blocks in common, down to biochemical structures and information processing languages. That is why natural substances seem to be better able to bind, and bind specifically, to drug targets in man, and to interact specifically with human biochemical networks. Property analyses of a large number of combinatorial and natural products and drugs have revealed the greater chemical similarity of the latter two. How about target preferences of natural products in comparison to synthetic drugs? On the basis of a comprehensive compilation and analysis of molecular targets of drug substances irrespective of their origin, the review categorises targets chemically and analyses the nature of drug targets. The dynamics of drug action are highlighted because an effective drug target comprises a biochemical system rather than a single molecule. The review is restricted to targets of natural compounds that are in use as therapeutic agents, comparing them with targets of marketed drugs in general. Differences are traced to historical, chemical, pharmacological, and social reasons. To give an example, the prevalence of natural products among antibacterial agents seems to be derived from, first, the necessity to have several hydrophilic binding sites for strong and lasting attachment to vital targets of bacteria, and synthetic drug candidates tend to be more hydrophobic than natural compounds. Second, other microorganisms are well equipped with – natural, of course – compounds with defensive or symbiotic functions that interfere with bacterial metabolism.

References

  • 1 Buckingham J. Dictionary of natural products. London; Chapman and Hall/CRC Press 2001
  • 2 Overington J P, Al-Lazikani B, Hopkins A L. How many drug targets are there?.  Nat Rev Drug Discov. 2006;  5 993-996
  • 3 Li J W H, Vederas J C. Drug discovery and natural products: end of an era or an endless frontier?.  Science. 2009;  325 161-165
  • 4 Feher M, Schmidt J M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry.  J Chem Inf Comput Sci. 2003;  43 218-227
  • 5 Grabowski K, Schneider G. Properties and architecture of natural products revisited.  Curr Chem Biol. 2007;  1 115-127
  • 6 Grabowski K, Baringhaus K H, Schneider G. Scaffold diversity of natural products: inspiration for combinatorial library design.  Nat Prod Rep. 2008;  25 892-904
  • 7 Lowe D. In the pipeline. Derek Lowe is looking for a little more variety among his reactions.  Chem World. 2008;  5 18
  • 8 Redwan el-RM.. Animal-derived pharmaceutical proteins.  J Immunoassay Immunochem. 2009;  30 262-290
  • 9 Oehler C, Bensdorf K, Gust R, Imming P. Chamavioline – antiedematous, but not a constituent of Matricaria recutita.  Phytochem Lett. 2009;  2 171-175
  • 10 Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets.  Nat Rev Drug Discov. 2006;  5 821-834
  • 11 Gwilt P G, Gwilt J R. Dame Agatha's poisonous pharmacopoeia. A chronological list of Agatha Christie stories which involved poison.  Pharmacol J. 1978;  221 572-573
  • 12 Swinney D C. Biochemical mechanisms of drug action: what does it take for success?.  Nat Rev Drug Discov. 2004;  3 801-808
  • 13 Swinney D C. The role of binding kinetics in therapeutically useful drug action.  Curr Opin Drug Discov Devel. 2009;  12 31-39
  • 14 Rosenbaum D M, Rasmussen S G, Kobilka B K. The structure and function of G-protein-coupled receptors.  Nature. 2009;  459 356-363
  • 15 Vaugeois J M. Signal transduction: positive feedback from coffee.  Nature. 2002;  418 734-736
  • 16 Agnati L F, Fuxe K, Ferré S. How receptor mosaics decode transmitter signals. Possible relevance of cooperativity.  Trends Biochem Sci. 2005;  30 188-193
  • 17 Heien M L, Khan A S, Ariansen J L, Cheer J F, Phillips P E, Wassum K M, Wightman R M. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats.  Proc Natl Acad Sci USA. 2005;  102 10023-10028
  • 18 Patrignani P, Tacconelli S, Sciulli M G, Capone M L. New insights into COX-2 biology and inhibition.  Brain Res Brain Res Rev. 2005;  48 352-359
  • 19 Chulia S, Ivorra M D, Martinez S, Elorriaga M, Valiente M, Noguera M A, Lugnier C, Advenier C, D'Ocon P. Relationships between structure and vascular activity in a series of benzylisoquinolines.  Br J Pharmacol. 1997;  122 409-416
  • 20 Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands.  Drug Discov Today. 2004;  9 641-651
  • 21 Wermuth C G. Selective optimization of side activities: the SOSA approach.  Drug Discov Today. 2006;  11 160-164
  • 22 Payne D J, Gwynn M N, Holmes D J, Pompliano D L. Drugs for bad bugs: confronting the challenges of antibacterial discovery.  Nat Rev Drug Discov. 2007;  6 29-40
  • 23 Drews J, Ryser St. Molecular drug targets.  Nat Biotechnol. 1997;  15 1350
  • 24 Hopkins A L, Groom C R. The druggable genome.  Nat Rev Drug Discov. 2002;  1 727-730
  • 25 Golden J B. Prioritizing the human genome: Knowledge management for drug discovery.  Curr Opin Drug Discov Devel. 2003;  6 310-316
  • 26 Golden J. Towards a tractable genome: knowledge management in drug discovery.  Curr Drug Discov. 2003;  3 17-20
  • 27 Wishart D S, Knox C, Guo A C, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration.  Nucleic Acids Res. 2006;  43 D668-D672
  • 28 Wishart D S, Knox C, Guo A C, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank: a knowledgebase for drugs, drug actions and drug targets.  Nucleic Acids Res. 2008;  36 D901-D906
  • 29 Zhu F, Han B, Kumar P, Liu X, Ma X, Wei X, Huang L, Guo Y, Han L, Zheng C, Chen Y. Update of TTD.  Nucleic Acids Res. 2010;  38 (Database issue) D787-D791 http://xin.cz3.nus.edu.sg/group/cjttd/TTD_ns.asp
  • 30 Li J J. Triumph of the heart: the story of statins. Oxford; Oxford University Press 2009
  • 31 Brown A G, Smale T C, King T J, Hasenkamp R, Thompson R H. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum.  J Chem Soc [Perkin I]. 1976;  1165-1170
  • 32 Bizukojc M, Ledakowicz S. Physiological, morphological and kinetic aspects of lovastatin biosynthesis by Aspergillus terreus.  Biotechnol J. 2009;  4 647-664
  • 33 Greenwood D. The quinine connection.  J Antimicrob Chemother. 1992;  30 417-427
  • 34 Kohanski M A, Dwyer D J, Hayete B, Lawrence C A, Collins J J. A common mechanism of cellular death induced by bactericidal antibiotics.  Cell. 2007;  130 797-810
  • 35 Ganesan A. The impact of natural products upon modern drug discovery.  Curr Opin Chem Biol. 2008;  12 306-317
  • 36 Lipinski C A. Chemistry after the rule of five.  Drug Discov Today. 2003;  8 12-16
  • 37 Shen T Y. Perspectives in nonsteroidal anti-inflammatory agents.  Angew Chem Int Ed Engl. 1972;  11 460-472
  • 38 Adams S S. The propionic acids: a personal perspective.  J Clin Pharmacol. 1992;  32 317-323
  • 39 de Sá Alves F R, Barreiro E J, Fraga C A. From nature to drug discovery: the indole scaffold as a 'privileged structure'.  Mini Rev Med Chem. 2009;  9 782-793
  • 40 Wu Y D, Gellman S. Peptidomimetics.  Acc Chem Res. 2008;  41 1231-1232
  • 41 Corey E J, Niwa H, Falck J R, Mioskowski C, Arai Y, Marfat A. Recent studies on the chemical synthesis of eicosanoids. Samuelsson B, Ramwell PW, Paoletti R Advances in prostaglandin and thromboxane research, Vol. 6. New York; Raven Press 1980: 19-25
  • 42 Deorukhar A, Krishnan S, Sethi G, Aggarwal B B. Back to basics: how natural products can provide the basis for new therapeutics.  Expert Opin Investig Drugs. 2007;  16 1753-1773
  • 43 Hyman S E, Fenton W S. What are the right targets for psychopharmacology?.  Science. 2003;  299 350-351
  • 44 Barry III C E, Matter A. Next-generation therapeutics: Turning the current 'innovation gap' into an 'innovation leap'.  Curr Opin Chem Biol. 2006;  10 291-293
  • 45 Lennox J. God's undertaker: has science buried god?. Oxford (UK); Lion Hudson 2009
  • 46 Polkinghorne J C. Belief in god in an age of science. New Haven, CT; Yale University Press 2003
  • 47 Cragg G M, Newman D J, Snader K M. Natural products in drug discovery and development.  J Nat Prod. 1997;  60 52-60
  • 48 Newman D J, Cragg G M, Snader K M. Natural products as sources of new drugs over the period 1981–2002.  J Nat Prod. 2003;  66 1022-1037
  • 49 Baker D D, Chu M, Oza U, Rajgarhia V. The value of natural products to future pharmaceutical discovery.  Nat Prod Rep. 2007;  24 1225-1244
  • 50 Butler M S. Natural products to drugs: natural product-derived compounds in clinical trials.  Nat Prod Rep. 2008;  25 475-516
  • 51 Raffin-Sanson M L, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions.  Eur J Endocrinol. 2003;  149 79-90

1 History
This article is based on lectures held at the 7th Joint Meeting of AFERP, ASP, GA, PSE & SIF, Athens, Greece, August 2008, and at the PharmSciFair Conference, Medicinal Plant and Natural Product Research Session, Nice, France, June 2009.

Prof. Dr. Peter Imming

Institut für Pharmazie
Martin-Luther-Universität

Wolfgang-Langenbeck-Str. 4

06120 Halle

Germany

Phone: + 49 34 55 52 51 75

Fax: + 49 34 55 52 70 27

Email: peter.imming@pharmazie.uni-halle.de