Planta Med 2011; 77(2): 146-151
DOI: 10.1055/s-0030-1250178
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Crocetin Inhibits Invasiveness of MDA‐MB‐231 Breast Cancer Cells via Downregulation of Matrix Metalloproteinases

Dimitra G. Chryssanthi1 , Petros G. Dedes2 , Nikos K. Karamanos2 , Paul Cordopatis1 , Fotini N. Lamari1
  • 1Department of Pharmacy, Laboratory of Pharmacognosy & Chemistry of Natural Products, University of Patras, Rion, Greece
  • 2Department of Chemistry, Laboratory of Biochemistry, University of Patras, Rion, Greece
Further Information

Publication History

received April 22, 2010 revised June 21, 2010

accepted July 1, 2010

Publication Date:
27 August 2010 (online)

Abstract

Crocetin is a carotenoid dicarboxylic acid which, in nature, is esterified with glucose or gentiobiose units forming the crocins, abundant components of saffron (a spice with many reputed medicinal uses). We have previously reported that saffron, crocins and crocetin inhibit breast cancer cell proliferation. In order to further study the effect of crocetin on breast cancer cells, we used the highly invasive MDA‐MB‐231 cells and measured the viability with the WST-1 assay and the invasiveness through a reconstituted basement membrane. After 24 h incubation, crocetin significantly inhibited not only proliferation but also invasion at 1 and 10 µM. Cancer invasiveness and metastasis are associated with the expression of matrix metalloproteinases (MMPs). In order to study the molecular changes of MMP expression that might accompany the observed crocetin effects, gene expression of MMPs was studied by RT‐PCR, whereas protein expression and gelatinolytic activity were determined with Western blotting and zymography, respectively. The gene and protein expression of pro-MT1-MMP and pro-MT2-MMP were greatly attenuated by both crocetin and all-trans-retinoic acid (ATRA, used as control). Incubation with 10 µM crocetin for 24 h in serum-free conditions reduced pro-MMP‐9 activity and pro-MMP‐2/MMP‐2 protein levels. When cultured in media with sera 2 and 5 %, crocetin at 10 μΜ also reduced gelatinase activity. The above findings show that crocetin, the main metabolite of crocins, inhibits MDA‐MB‐231 cell invasiveness via downregulation of MMP expression.

References

  • 1 Asai A, Nakano T, Takahashi M, Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice.  J Agric Food Chem. 2005;  53 7302-7306
  • 2 Escribano J, Alonso G L, Coca-Prados M, Fernandez J A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro.  Cancer Lett. 1996;  100 23-30
  • 3 Tavakkol-Afshari J, Brook A, Mousavi S H. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines.  Food Chem Toxicol. 2008;  46 3443-3447
  • 4 Tarantilis P A, Morjani H, Polissiou M, Manfait M. Inhibition of growth and induction of differentiation of promyelocytic leukemia (HL-60) by carotenoids from Crocus sativus L.  Anticancer Res. 1994;  14 1913-1918
  • 5 Aung H H, Wang C Z, Ni M, Fishbein A, Mehendale S R, Xie J T, Shoyama C Y, Yuan C S. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells.  Exp Oncol. 2007;  29 175-180
  • 6 Garcia-Olmo D C, Riese H H, Escribano J, Ontanon J, Fernandez J A, Atienzar M, García-Olmo D. Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat.  Nutr Cancer. 1999;  35 120-126
  • 7 Thatte U, Bagadey S, Dahanukar S. Modulation of programmed cell death by medicinal plants.  Cell Mol Biol. 2000;  46 199-214
  • 8 Abdullaev F I, Riveron-Negrete L, Caballero-Ortega H, Manuel Hernandez J, Perez-Lopez I, Pereda-Miranda R, Espinosa-Aguirre J J. Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.).  Toxicol In Vitro. 2003;  17 731-736
  • 9 Abdullaev F I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.).  Exp Biol Med (Maywood). 2002;  227 20-25
  • 10 Chryssanthi D G, Lamari F N, Iatrou G, Pylara A, Karamanos N K, Cordopatis P. Ιnhibition of breast cancer cell proliferation by style constituents of different Crocus species.  Anticancer Res. 2007;  27 357-362
  • 11 Mousavi S H, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells.  Food Chem Toxicol. 2009;  47 1909-1913
  • 12 Konjevic G, Stankovic S. Matrix metalloproteinases in the process of invasion and metastasis.  Arch Oncol. 2006;  14 136-140
  • 13 Murray G I. Matrix metalloproteinases: a multifunctional group of molecules.  J Pathol. 2001;  195 135-137
  • 14 Kousidou O C, Roussidis A E, Theocharis A D, Karamanos N K. Expression of MMPs and TIMPs genes in human breast cancer epithelial cells depends on cell culture conditions and is associated with their invasive potential.  Anticancer Res. 2004;  24 4025-4030
  • 15 Thompson E W, Paik S, Brünner N, Sommers C L, Zugmaier G, Clarke R, Shima T B, Torri J, Donahue S, Lippman M E, Martin G R, Dickson R B. Association of increased basement membrane-invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines.  J Cell Physiol. 1992;  150 534-544
  • 16 Benbow U, Schoenermark M P, Orndorff K A, Givan A L, Brinckerhoff C E. Human breast cancer cells activate procollagenase-1 and invade type I collagen: invasion is inhibited by all-trans retinoic acid.  Clin Exp Metastasis. 1999;  17 231-238
  • 17 Liu H, Zang C, Fenner M H, Possinger K, Elstner E. PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro.  Breast Cancer Res Treat. 2003;  79 63-74
  • 18 Modaghegh M H, Shahabian M, Esmaeili H A, Rajbai O, Hosseinzadeh H. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers.  Phytomedicine. 2008;  15 1032-1037
  • 19 Ng J H, Nesaretnam K, Reimann K, Lai L C. Effect of retinoic acid and palm oil carotenoids on oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase activities in MCF-7 and MDA-MB-231 breast cancer cell lines.  Int J Cancer. 2000;  88 135-138
  • 20 Huang C S, Liao J W, Hu M L. Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice.  J Nutr. 2008;  138 538-543
  • 21 Yan C, Boyd D D. Regulation of matrix metalloproteinase gene expression.  J Cell Physiol. 2007;  211 19-26
  • 22 Dutta A, Sen T, Banerji A, Das S, Chatterjee A. Studies on multifunctional effect of all-trans-retinoic acid (ATRA) on matrix metalloproteinase-2 (MMP-2) and its regulatory molecules in human breast cancer cells (MCF-7).  J Oncol. DOI: 10.1155/2009/627840 , advance online publication 19 July 2009
  • 23 Figueira R C, Gomes L R, Neto J S, Silva F C, Silva I D, Sogayar M C. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential.  BMC Cancer. 2009;  9 20
  • 24 Polette M, Birembaut P. Membrane-type metalloproteinases in tumor invasion.  Int J Biochem Cell Biol. 1998;  11 1195-1202
  • 25 Hotary K, Allen E, Punturieri A, Yana I, Weiss S J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3.  J Cell Biol. 2000;  149 1309-1323
  • 26 Bartsch J E, Staren E D, Appert H E. Matrix metalloproteinase expression in breast cancer.  J Surg Res. 2003;  110 383-392
  • 27 Singer C F, Kronsteiner N, Marton E, Kubista M, Cullen K J, Hirtenlehner K, Seifert M, Kubista E. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions.  Breast Cancer Res Treat. 2002;  72 69-77
  • 28 Bissell M J, Radisky D. Putting tumours in context.  Nat Rev Cancer. 2001;  1 46-54
  • 29 Kanakis C D, Tarantilis P A, Pappas C, Bariyanga J, Tajmir-Riahi H A, Polissiou M G. An overview of structural features of DNA and RNA complexes with saffron compounds: models and antioxidant activity.  J Photochem Photobiol B. 2009;  95 204-212
  • 30 Bathaie S Z, Bolhasani A, Hoshyar R, Ranjbar B, Sabouni F, Moosavi-Movahedi A A. Interaction of saffron carotenoids as anticancer compounds with ctDNA, Oligo (dG.dC)15, and Oligo (dA.dT)15.  DNA Cell Biol. 2007;  26 533-540
  • 31 Ashrafi M, Bathaie S Z, Taghikhani M, Moosavi-Movahedi A A. The effect of carotenoids obtained from saffron on histone H1structure and H1-DNA interaction.  Int J Biol Macromol. 2005;  36 246-252
  • 32 Abdullaev F I. Inhibitory effect of crocetin on intracellular nucleic acid and protein synthesis in malignant cells.  Toxicol Lett. 1994;  70 243-251
  • 33 Magesh V, Singh J P, Selvendiran K, Ekambaram G, Sakthisekaran D. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies.  Mol Cell Biochem. 2006;  287 127-135
  • 34 Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, Campbell R D, Banerjee K S. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model.  Mol Cancer Ther. 2009;  8 315-323
  • 35 Brooks A S, Lomax-Browne J H, Carter M T, Kinch E C, Hall M S D. Molecular interactions in cancer cell metastasis.  Acta Histochem. 2010;  112 3-25

Dr. Fotini N. Lamari

Department of Pharmacy
Laboratory of Pharmacognosy & Chemistry of Natural Products
University of Patras

26504 Rion

Greece

Phone: + 30 26 10 96 93 35

Fax: + 30 26 10 99 32 78

Email: flam@upatras.gr