Planta Med 2011; 77(1): 40-45
DOI: 10.1055/s-0030-1250121
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Effects of 7-Epiclusianone on Streptococcus mutans and Caries Development in Rats

Luciana Salles Branco-de-Almeida1 , Ramiro Mendonça Murata1 , Eliane Melo Franco1 , Marcelo Henrique dos Santos2 , Severino Matias de Alencar3 , 5 , Hyun Koo4 , 5 , Pedro Luiz Rosalen1 , 5
  • 1Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, SP, Brazil
  • 2Laboratory of Phytochemistry and Medicinal Chemistry, Federal University of Alfenas, MG, Brazil
  • 3Department of Agri-Food Industry, Food and Nutrition, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil
  • 4Center for Oral Biology and Eastman Department of Dentistry, University of Rochester Medical Center, Rochester, NY, USA
  • 5Natural Product Research Group in Oral Biology (NatPROB), SP, Brazil
Further Information

Publication History

received February 19, 2010 revised May 14, 2010

accepted June 12, 2010

Publication Date:
21 July 2010 (online)

Abstract

The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 µg/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 ± 1.8 of inhibition at 100 µg/mL) and glycolytic pH-drop by S. mutans in biofilms (125 and 250 µg/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15 % ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth- and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals' dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease.

References

  • 1 Marsh P D. Plaque as a biofilm: pharmacological principles of drug delivery and action in the sub- and supragingival enviroment.  Oral Dis. 2003;  9 16-22
  • 2 Loesche W J. Role of Streptococcus mutans in human dental decay.  Microbiol Rev. 1986;  50 353-380
  • 3 Van Houte J. Role of micro-organisms in caries etiology.  J Dent Res. 1994;  73 672-681
  • 4 Schilling K M, Bowen W H. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans.  Infect Immun. 1992;  60 284-295
  • 5 Yamashita Y, Bowen W H, Burne R A, Kuramitsu H K. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model.  Infect Immun. 1993;  61 3811-3817
  • 6 Bowen W H. Do we need to be concerned about dental caries in the coming millennium?.  Crit Rev Oral Biol Med. 2002;  13 126-131
  • 7 Paes Leme A F, Koo H, Bellato C M, Bedi G, Cury J A. The role of sucrose in cariogenic dental biofilm formation – new insight.  J Dent Res. 2006;  85 878-887
  • 8 Vacca Smith A M, Scott-Anne K M, Whelehan M T, Berkowitz R J, Feng C, Bowen W H. Salivary glucosyltransferase B as a possible marker for caries activity.  Caries Res. 2007;  41 445-450
  • 9 Bowden G H. Microbiology of root surface caries in humans.  J Dent Res. 1990;  69 1205-1210
  • 10 Belli W A, Marquis R E. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture.  Appl Environ Microbiol. 1991;  57 1134-1138
  • 11 Koo H, Jeon J G. Naturally occurring molecules as alternative therapeutic agents against cariogenic biofilms.  Adv Dent Res. 2009;  21 63-68
  • 12 Koo H, Pearson S K, Scott-Anne K, Abranches J, Cury J A, Rosalen P L, Park Y K, Marquis R E, Bowen W H. Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats.  Oral Microbiol Immunol. 2003;  17 337-343
  • 13 Duarte S, Rosalen P L, Hayacibara M F, Cury J A, Bowen W H, Marquis R E, Rehder V L, Sartoratto A, Ikegaki M, Koo H. The influence of a novel propolis on mutans streptococci biofilms and caries development in rats.  Arch Oral Biol. 2006;  51 15-22
  • 14 Almeida L S, Murata R M, Yatsuda R, Dos Santos M H, Nagem T J, Alencar S M, Koo H, Rosalen P L. Antimicrobial activity of Rheedia brasiliensis and 7-epiclusianone against Streptococcus mutans.  Phytomedicine. 2008;  15 886-891
  • 15 Murata R M, Branco de Almeida L S, Yatsuda R, Dos Santos M H, Nagem T J, Rosalen P L, Koo H. Inhibitory effects of 7-epiclusianone on glucan synthesis, acidogenicity and biofilm formation by Streptococcus mutans.  FEMS Microbiol Lett. 2008;  282 174-181
  • 16 Dos Santos M H, Nagem T J, Oliveira T T, Braz-Filho R. 7-Epiclusianona: a nova benzofenona tetraprenilada e outros constituintes químicos dos frutos de Rheedia gardneriana.  Quim Nova. 1999;  22 654-660
  • 17 Koo H, Schobel B, Scott-Anne K, Watson G, Bowen W H, Cury J A, Rosalen P L, Park Y K. Apigenin and tt-farnesol with fluoride on S. mutans biofilms and dental caries.  J Dent Res. 2005;  84 1016-1020
  • 18 Venkitaraman A R, Vacca-Smith A M, Kopec L K, Bowen W H. Characterization of glucosyltransferaseB, GtfC, and GtfD in solution and on the surface of hydroxyapatite.  J Dent Res. 1995;  74 1695-1701
  • 19 Schilling K M, Bowen W H. The activity of glucosyltransferases adsorbed onto saliva-coated hydroxyapatite.  J Dent Res. 1988;  67 2-8
  • 20 Koo H, Hayacibara M F, Schobel B D, Cury J A, Rosalen P L, Park Y K, Vacca-Smith A M, Bowen W H. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol.  J Antimicrob Chemother. 2003;  52 782-789
  • 21 Belli W A, Buckley D H, Marquis R E. Weak acid effects and fluoride inhibition of glycolysis by Streptococcus mutans GS-5.  Can J Microbiol. 1995;  41 785-791
  • 22 Bowen W H, Madison K M, Pearson S K. Influence of desalivation in rats on incidence of caries in intact cagemates.  J Dent Res. 1988;  67 1316-1318
  • 23 Keyes P H. Dental caries in the molar teeth of rats. I. Distribution of lesions induced by high carbohydrate low-fat diets.  J Dent Res. 1958;  37 1077-1087
  • 24 Larson R M. Merits and modifications of scoring rat dental caries by Keyes' method. Tanzer JM Animal models in cariology. Sp. supp. microbiology abstracts. Washington, DC; IRL Press 1981: 195-203
  • 25 Antunes J F L, Narvai P C, Nugent Z J. Measuring inequalities in the distribution of dental caries.  Community Dent Oral Epidemiol. 2004;  32 41-48
  • 26 Koo H, Xiao J, Klein M I, Jeon J G. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms.  J Bacteriol. 2010;  192 3024-3032
  • 27 Wunder D, Bowen W H. Action of agents on glucosyltransferases from Streptococcus mutans in solution and adsorbed to experimental pellicle.  Arch Oral Biol. 1999;  44 203-214
  • 28 Stewart P S. Theoretical aspects of antibiotic diffusion into microbial biofilms.  Antimicrob Agents Chemother. 1996;  40 2517-2522
  • 29 Zero D T. Dentifrices, mouthwashes, and remineralization/caries arrestment strategies.  BMC Oral Health. 2006;  6 (Suppl. 1) S9
  • 30 Koo H. Strategies to enhance the biological effects of fluoride on dental biofilms.  Adv Dent Res. 2008;  20 17-21

Prof. Dr. Pedro Luiz Rosalen

Department of Physiological Sciences
University of Campinas
Piracicaba Dental School

Avenida Limeira, 901, Areão

Caixa Postal 52

13414 - 903 Piracicaba SP

Brazil

Phone: + 55 19 21 06 53 13

Fax: + 55 19 21 06 52 00

Email: rosalen@fop.unicamp.br