Z Orthop Unfall 2011; 149(1): 37-44
DOI: 10.1055/s-0030-1250059
Knorpel

© Georg Thieme Verlag KG Stuttgart · New York

Zelltherapie zur Knorpelregeneration im Kniegelenk

Regeneration of Osteochondral Defects in the KneeM. Jäger1 , B. Bittersohl1 , C. Zilkens1 , M. Herten1 , R. Krauspe1
  • 1Klinik für Orthopädie und Orthopädische Chirurgie, Heinrich-Heine-Universität Düsseldorf
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. Juli 2010 (online)

Zusammenfassung

Die Zelltherapie besitzt einen festen Stellenwert bei der Therapie chondraler Läsionen am Kniegelenk. Die derzeit am häufigsten zur chondralen Regeneration eingesetzten Zellen sind ausdifferenzierte Chondrozyten (autologous chondrocyte implantation, ACI; matrix-induced autologous chondrocyte implantation, MACI). Das enzymatische Herauslösen der Chondrozyten aus dem entnommenen Knorpel durch Kollagenasen sowie die anschließende Zellexpansion führt zu einer zellulären De- bzw. Transdifferenzierung. Um diese zu verhindern, empfehlen einige Autoren die 3-D‐Kultivierung sowie die Zugabe von Wachstumsfaktoren und Zytokinen. Zur Vermeidung von entnahmebedingten, iatrogenen Knorpelschäden bei der Gewinnung von chondrozytärem Gewebe werden gegenwärtig verschiedene Progenitorzellen auf ihre Potenz zur osteochondralen Regeneration untersucht. Insbesondere autologe MSC aus dem Knochenmark weisen zahlreiche Vorteile für die Behandlung von osteochondralen Defekten auf. Neben der guten Verfügbarkeit, der vergleichsweise einfachen Entnahme- und Kultivierungstechnik besitzen nach derzeitigem Kenntnisstand humane MSC ebenfalls ein hohes Maß an biologischer Sicherheit. In der vorliegenden Übersichtsarbeit werden zellbiologische Grundlagen und klinische Ergebnisse der Zelltherapie zur Behandlung chondraler Defekte am Kniegelenk zusammengefasst und diskutiert.

Abstract

The application of autologous cells is a standard procedure for the treatment of chondral lesions of the knee. Here, the most frequently used cells are differentiated chondrocytes (autologous chondrocyte implantation, ACI; matrix-induced autologous chondrocyte implantation, MACI). The enzymatic digestion of cartilage tissue by collagenase and isolation of chondrocytes followed by in vitro cultivation are associated with cellular de- and transdifferentiation. To prevent these effects some authors recommend 3D‐cultures and culture medium supplementation of defined growth factors and cytokines. Another aim is the reduction of donor site morbidity. Therefore, different progenitor cell types were tested towards their potential for osteochondral regeneration. In particular, MSC derived from bone marrow include several advantages for the treatment of osteochondral defects such as unproblematic sampling, cultivation techniques, and a relatively high degree of biological safety. This review summarises the basic cellular principles as well as clinical results of cell therapeutics for the regeneration of osteochondral defects in the knee.

Literatur

  • 1 Jäger M, Fischer J, Schultheis A et al. Extensive H(+) release by bone substitutes affects biocompatibility in vitro testing.  J Biomed Mater Res A. 2006;  76 310-322
  • 2 Ito Y, Fitzsimmons J S, Sanyal A et al. Localization of chondrocyte precursors in periosteum.  Osteoarthritis Cartilage. 2001;  9 215-223
  • 3 Jäger M, Schultheis A, Westhoff B et al. Osteogenic progenitor cell potency after high-dose chemotherapy (COSS-96).  Anticancer Res. 2005;  25 947-954
  • 4 O'Driscoll S W. Articular cartilage regeneration using periosteum.  Clin Orthop Relat Res. 1999;  367 (Suppl.) S186-S203
  • 5 Werner A, Jager M, Schmitz H et al. Joint preserving surgery for osteonecrosis and osteochondral defects after chemotherapy in childhood.  Klin Padiatr. 2003;  215 332-337
  • 6 Zarnett R, Salter R B. Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin.  Can J Surg. 1989;  32 171-174
  • 7 Chang C H, Kuo T F, Lin C C et al. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks.  Biomaterials. 2006;  27 1876-1888
  • 8 Bentley G, Biant L C, Carrington R W et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.  J Bone Joint Surg [Br]. 2003;  85 223-230
  • 9 Horas U, Pelinkovic D, Herr G et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial.  J Bone Joint Surg [Am]. 2003;  85 185-192
  • 10 Knutsen G, Engebretsen L, Ludvigsen T C et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial.  J Bone Joint Surg [Am]. 2004;  86 455-464
  • 11 Behrens P, Bosch U, Bruns J et al. [Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT)].  Z Orthop Ihre Grenzgeb. 2004;  142 529-539
  • 12 Marlovits S, Zeller P, Singer P et al. Cartilage repair: generations of autologous chondrocyte transplantation.  Eur J Radiol. 2006;  57 24-31
  • 13 Bachmann G, Basad E, Lommel D et al. [MRI in the follow-up of matrix-supported autologous chondrocyte transplantation (MACI) and microfracture].  Radiologe. 2004;  44 773-782
  • 14 Behrens P, Ehlers E M, Kochermann K U et al. [New therapy procedure for localized cartilage defects. Encouraging results with autologous chondrocyte implantation].  MMW Fortschr Med. 1999;  141 49-51
  • 15 Krishnan S P, Skinner J A, Bartlett W et al. Who is the ideal candidate for autologous chondrocyte implantation?.  J Bone Joint Surg [Br]. 2006;  88 61-64
  • 16 Marcacci M, Berruto M, Brocchetta D et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results.  Clin Orthop Relat Res. 2005;  435 96-105
  • 17 Kon E, Gobbi A, Filardo G et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years.  Am J Sports Med. 2009;  37 33-41
  • 18 Waldman S D, Grynpas M D, Pilliar R M et al. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage.  J Orthop Res. 2003;  21 132-138
  • 19 Wakitani S, Mitsuoka T, Nakamura N et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports.  Cell Transplant. 2004;  13 595-600
  • 20 Jäger M, Jelinek E M, Wess K M et al. Bone marrow concentrate: a novel strategy for bone defect treatment.  Curr Stem Cell Res Ther. 2009;  4 34-43
  • 21 Schek R M, Taboas J M, Segvich S J et al. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds.  Tissue Eng. 2004;  10 1376-1385
  • 22 Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation.  Clin Sports Med. 1999;  18 13-44
  • 23 Quinn T M, Hunziker E B, Hauselmann H J. Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee.  Osteoarthritis Cartilage. 2005;  13 672-678
  • 24 Kelly D J, Prendergast P J. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects.  J Biomech. 2005;  38 1413-1422
  • 25 Tallheden T, Dennis J E, Lennon D P et al. Phenotypic plasticity of human articular chondrocytes.  J Bone Joint Surg [Am]. 2003;  85 (Suppl. 2) 93-100
  • 26 Marinova-Mutafchieva L, Taylor P, Funa K et al. Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint.  Arthritis Rheum. 2000;  43 2046-2055
  • 27 Nishimura K, Solchaga L A, Caplan A I et al. Chondroprogenitor cells of synovial tissue.  Arthritis Rheum. 1999;  42 2631-2637
  • 28 Vasiliadis H S, Danielson B, Ljungberg M et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique.  Am J Sports Med. 2010;  38 943-949
  • 29 Clar C, Cummins E, McIntyre L et al. Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.  Health Technol Assess. 2005;  9 iii-iv ix-x 1-82
  • 30 Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life.  Am J Orthop. 1998;  27 739-744
  • 31 Peterson L, Minas T, Brittberg M et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.  Clin Orthop Relat Res. 2000;  374 212-234
  • 32 Micheli L J, Browne J E, Erggelet C et al. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up.  Clin J Sport Med. 2001;  11 223-228
  • 33 Basad E, Stürz H, Steinmeyer J. Die Behandlung chondraler Defekte mit MACI oder Microfracture – erste Ergebnisse einer vergleichenden klinischen Studie.  Orthopädische Praxis. 2004;  40 6-10
  • 34 Behrens P, Bitter T, Kurz B et al. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI) – 5-year follow-up.  Knee. 2006;  13 194-202
  • 35 Gooding C R, Bartlett W, Bentley G et al. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered.  Knee. 2006;  13 203-210
  • 36 Steinwachs M, Kreuz P C. Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up.  Arthroscopy. 2007;  23 381-387
  • 37 Ossendorf C, Kaps C, Kreuz P C et al. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results.  Arthritis Res Ther. 2007;  9 R41
  • 38 Ossendorf C, Kreuz P C, Steinwachs M R et al. Autologous chondrocyte implantation for the treatment of large full-thickness cartilage lesions of the knee.  Saudi Med J. 2007;  28 1251-1256
  • 39 Niemeyer P, Kreuz P C, Steinwachs M et al. Technical note: the “double eye” technique as a modification of autologous chondrocyte implantation for the treatment of retropatellar cartilage defects.  Knee Surg Sports Traumatol Arthrosc. 2007;  15 1461-1468
  • 40 Niemeyer P, Kreuz P C, Steinwachs M et al. [Operative treatment of cartilage lesions in the knee joint].  Sportverletz Sportschaden. 2007;  21 41-50
  • 41 Kreuz P C, Steinwachs M, Erggelet C et al. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee.  Osteoarthritis Cartilage. 2007;  15 1339-1347
  • 42 Anders S, Schaumburger J, Schubert T et al. [Matrix-associated autologous chondrocyte transplantation (MACT). Minimally invasive technique in the knee].  Oper Orthop Traumatol. 2008;  20 208-219
  • 43 Niemeyer P, Steinwachs M, Erggelet C et al. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: clinical results referred to defect localisation.  Arch Orthop Trauma Surg. 2008;  128 1223-1231
  • 44 Nejadnik H, Hui J H, Choong E P et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study.  Am J Sports Med. 2010;  38 1110-1116
  • 45 Peterson L, Vasiliadis H S, Brittberg M et al. Autologous chondrocyte implantation: a long-term follow-up.  Am J Sports Med. 2010;  38 1117-1124
  • 46 Zeifang F, Oberle D, Nierhoff C et al. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial.  Am J Sports Med. 2010;  38 924-933
  • 47 Basad E, Ishaque B, Bachmann G et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study.  Knee Surg Sports Traumatol Arthrosc. 2010;  18 519-527

Priv.-Doz. Dr. med. Marcus Jäger

Klinik für Orthopädie und Orthopädische Chirurgie
Heinrich-Heine-Universität Düsseldorf

Moorenstraße 5

40225 Düsseldorf

Telefon: 02 11/8 11 85 80

Fax: 02 11/8 11 66 93

eMail: jaeger@med.uni-duesseldorf.de