Handchir Mikrochir Plast Chir 2010; 42(2): 124-128
DOI: 10.1055/s-0030-1248269
Review

© Georg Thieme Verlag KG Stuttgart · New York

Adipose Stem Cells for Soft Tissue Regeneration

Stammzellen aus dem Fettgewebe zur Regeneration von WeichteilgewebenC. Brayfield1 , K. Marra1 , J. P. Rubin1
  • 1Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
Weitere Informationen

Publikationsverlauf

eingereicht 1.10.2009

akzeptiert 19.1.2010

Publikationsdatum:
29. März 2010 (online)

Abstract

Adipose-derived stem cells (ASCs) can be isolated from human adipose tissue with the exceptional potential for differentiation into mature adipocytes. Utilization of this system is very promising in developing improved techniques to repair soft tissue defects. Current reconstructive procedures, especially after trauma and oncological surgery, transfer autologous soft tissue grafts having limitations. However, ASCs offer the ability to either generate soft tissue with no donor-site morbidity (with the exception of a minor loss of adipose tissue) or enhance the viability and durability of other grafts. This review will discuss the relevant properties of human adult adipose-derived stem cells for the regeneration of adipose tissue. Discussion will focus on the biology of ASCs, cell delivery vehicles/scaffolds useful in applying ASCs as a therapy, and suitable in vivo animal models for studying adipose tissue engineering. Also included is a description of the current clinical studies with ASCs in Europe and Asia.

Zusammenfassung

Es ist möglich, Stammzellen aus dem Fettgewebe (Adipose-Derived Stem cells, ASC), die sich in reife Adipozyten entwickeln können, aus dem Fettgewebe zu isolieren. Die Nutzung dieses Stammzell-Systems bietet neue Chancen im Hinblick auf regenerative Ansätze bei der Behandlung von Weichteildefekten. Die derzeitigen rekonstruktiven Möglichkeiten durch autologe Weichteiltransplantate nach Trauma oder Tumorresektion sind begrenzt. Stammzellen aus dem Fettgewebe ermöglichen einerseits die Wiederherstellung von Weichgeweben mit sehr geringem Hebedefekt und können andererseits die Überlebensrate bei anderen Transplantaten verbessern. Diese Übersichtsarbeit fasst die wesentlichen Eigenschaften von humanen Stammzellen aus dem Fettgewebe zur Regeneration von Fettgewebe zusammen. Die Biologie von ASCs, mögliche Transportvehikel und Matrizes zur therapeutischen Plazierung und geeignete in vivo Tiermodelle zum Tissue Engineering von Fettgewebe sowie aktuelle klinische Studien in Europa und Asien werden diskutiert.

Literatur

  • 1 Aksu AE, Rubin JP, Dudas JR. et al . Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells.  Ann Plast Surg. 2008;  60 306-322
  • 2 American Society of Plastic Surgeons . 2008 Reconstructive Surgery Procedures Statistics.  http://www.plasticsurgery.org 2008; 
  • 3 Amos PJ, Shang H, Bailey AM. et al . IFATS collection: The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype.  Stem Cells. 2008;  26 2682-2690
  • 4 Avram MM, Avram AS, James WD. Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell.  J Am Acad Dermatol. 2007;  56 472-492
  • 5 Boquest AC, Noer A, Collas P. Epigenetic programming of mesenchymal stem cells from human adipose tissue.  Stem Cell Rev. 2006;  2 319-329
  • 6 Bunnell BA, Estes BT, Guilak F. et al . Differentiation of adipose stem cells.  Methods Mol Biol. 2008;  456 155-171
  • 7 Cherubino M, Marra KG. Adipose-derived stem cells for soft tissue reconstruction.  Regen Med. 2009;  4 109-117
  • 8 Crisan M, Yap S, Casteilla L. et al . A perivascular origin for mesenchymal stem cells in multiple human organs.  Cell Stem Cell. 2008;  3 301-313
  • 9 Dubois SG, Floyd EZ, Zvonic S. et al . Isolation of human adipose-derived stem cells from biopsies and liposuction specimens.  Methods Mol Biol. 2008;  449 69-79
  • 10 Ersek RA. Transplantation of purified autologous fat: a 3-year follow-up is disappointing.  Plast Reconstr Surg. 1991;  87 219-227 discussion 228
  • 11 Flynn L, Prestwich GD, Semple JL. et al . Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells.  Biomaterials. 2007;  28 3834-3842
  • 12 Flynn LE, Prestwich GD, Semple JL. et al . Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds.  Biomaterials. 2008;  29 1862-1871
  • 13 Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices.  Organogenesis. 2008;  4 228-235
  • 14 Garcia-Olmo D, Garcia-Arranz M, Garcia LG. et al . Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn's disease: a new cell-based therapy.  Int J Colorectal Dis. 2003;  18 451-454
  • 15 Garcia-Olmo D, Garcia-Arranz M, Herreros D. Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn's disease.  Expert Opin Biol Ther. 2008;  8 1417-1423
  • 16 Garcia-Olmo D, Garcia-Arranz M, Herreros D. et al . A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation.  Dis Colon Rectum. 2005;  48 1416-1423
  • 17 Garcia-Olmo D, Herreros D, Pascual M. et al . Treatment of enterocutaneous fistula in Crohn's disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion.  Int J Colorectal Dis. 2009;  24 27-30
  • 18 Gomillion CT, Burg KJ. Stem cells and adipose tissue engineering.  Biomaterials. 2006;  27 6052-6063
  • 19 Hemmrich K, Meersch M, von Heimburg D. et al . Applicability of the dyes CFSE, CM-DiI and PKH26 for tracking of human preadipocytes to evaluate adipose tissue engineering.  Cells Tissues Organs. 2006;  184 117-127
  • 20 Hemmrich K, von Heimburg D. Biomaterials for adipose tissue engineering.  Expert Rev Med Devices. 2006;  3 635-645
  • 21 Krampera M, Marconi S, Pasini A. et al . Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus.  Bone. 2007;  40 382-390
  • 22 Lin K, Matsubara Y, Masuda Y. et al . Characterization of adipose tissue-derived cells isolated with the Celution system.  Cytotherapy. 2008;  10 417-426
  • 23 Lin YC, Brayfield CA, Gerlach JC. et al . Peptide modification of polyethersulfone surfaces to improve adipose-derived stem cell adhesion.  Acta Biomater. 2008;  5 1416-1424
  • 24 Martinez-Estrada OM, Munoz-Santos Y, Julve J. et al . Human adipose tissue as a source of Flk-1+ cells: new method of differentiation and expansion.  Cardiovasc Res. 2005;  65 328-333
  • 25 Matsumoto D, Sato K, Gonda K. et al . Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection.  Tissue Eng. 2006;  12 3375-3382
  • 26 Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery.  Plast Reconstr Surg. 2006;  118 S121-S128
  • 27 Patrick CW, Uthamanthil R, Beahm E. et al . Animal models for adipose tissue engineering.  Tissue Eng Part B Rev. 2008;  14 167-178
  • 28 Patrick Jr CW, Zheng B, Johnston C. et al . Long-term implantation of preadipocyte-seeded PLGA scaffolds.  Tissue Eng. 2002;  8 283-293
  • 29 Rehman J, Traktuev D, Li J. et al . Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells.  Circulation. 2004;  109 1292-1298
  • 30 Schipper BM, Marra KG, Zhang W. et al . Regional anatomic and age effects on cell function of human adipose-derived stem cells.  Ann Plast Surg. 2008;  60 538-544
  • 31 Schoeller T, Lille S, Wechselberger G. et al . Histomorphologic and volumetric analysis of implanted autologous preadipocyte cultures suspended in fibrin glue: a potential new source for tissue augmentation.  Aesthetic Plast Surg. 2001;  25 57-63
  • 32 Yoshimura K, Asano Y, Aoi N. et al . Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications.  Breast J. 2009 Nov. 12;  [Epub ahead of print]
  • 33 Yoshimura K, Sato K, Aoi N. et al . Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells.  Aesthetic Plast Surg. 2008;  32 48-55 ; discussion 56–47
  • 34 Yoshimura K, Sato K, Aoi N. et al . Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells.  Dermatol Surg. 2008;  34 1178-1185
  • 35 Yoshimura K, Shigeura T, Matsumoto D. et al . Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates.  J Cell Physiol. 2006;  208 64-76
  • 36 Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation.  Regen Med. 2009;  4 265-273
  • 37 Zuk PA, Zhu M, Mizuno H. et al . Multilineage cells from human adipose tissue: implications for cell-based therapies.  Tissue Eng. 2001;  7 211-228

Correspondence

J. Peter RubinM.D. 

Department of Plastic Surgery

University of Pittsburgh

3380 Blvd of the Allies

Suite 180

Pittsburgh

15213 Pennsylvania

United States of America

eMail: rubinjp@upmc.edu

    >