Rofo 2011; 183(3): 226-232
DOI: 10.1055/s-0029-1245739
Muskuloskelettales System

© Georg Thieme Verlag KG Stuttgart · New York

The Influence of Collagen Network Integrity on the Accumulation of Gadolinium-Based MR Contrast Agents in Articular Cartilage

Der Einfluss der Integrität des Kollagenfasergerüsts auf die Akkumulation gadoliniumhaltiger MR-Kontrastmittel im GelenkknorpelE. Wiener1 , M. Settles2 , G. Weirich3 , C. Schmidt1 , G. Diederichs1
  • 1Institut für Radiologie, Charité Universitätsmedizin Berlin
  • 2Institut für Röntgendiagnostik, Klinikum Rechts der Isar
  • 3Institut für Pathologie und Pathologische Anatomie, Klinikum Rechts der Isar
Further Information

Publication History

received: 8.7.2010

accepted: 8.9.2010

Publication Date:
05 November 2010 (online)

Zusammenfassung

Ziel: Die Gadolinium-verstärkte MR-Bildgebung des Gelenkknorpels wird zur Quantifizierung des Proteoglykanverlusts bei initialer Arthrose eingesetzt. Dabei wird angenommen, dass T 1 nach Gd-DTPA-Gabe im gleichgewichtsnahen Zustand selektiv mit dem Proteoglykanverlust des Knorpels korreliert. Um den Einfluss der Integrität des Kollagenfasergerüsts auf die Kontrastmittelakkumulation zu untersuchen, wurden die Relaxationsraten ΔR1 und ΔR2 nach Gd-DTPA-Gabe in einem gängigen Arthrosemodell verglichen. Material und Methoden: Der Abbau von Kollagen oder Proteoglykanen wurde dabei durch die proteolytischen Enzyme Kollagenase und Papain am gesunden bovinen Patellarknorpel induziert. Unter Verwendung einer speziellen MR-Sequenz wurden gleichzeitig T 1- und T 2-Parameterbilder vor und 11 h nach Gd-DTPA-Gabe akquiriert. Tiefenprofile von ΔR1 und ΔR2 im gesunden, proteoglykanreduzierten und kollagenreduzierten Gelenkknorpel wurden berechnet und Mittelwerte aus unterschiedlichen Knorpelschichten mit dem Mann-Whitney-U-Test verglichen. Ergebnisse: In oberflächlichen Schichten (1 mm) konnte weder für ΔR1 noch für ΔR2 ein signifikanter Unterschied (p > 0,05) zwischen proteoglykanreduziertem (16,6 ± 1,2 s–1, 15,9 ± 1,0 s–1) und kollagenreduziertem Gelenkknorpel (15,3 ± 0,9 s–1, 15,5 ± 0,9 s–1) festgestellt werden. In tiefen Schichten (3 mm) waren beide Parameter im proteoglykanreduzierten Gelenkknorpel (12.3 ± 1.1 s–1, 9,8 ± 0,8 s–1) signifikant höher (p = 0,005, 0,03) als im kollagenreduzierten Gelenkknorpel (9,1 ± 1,1 s–1, 8,7 ± 0,7 s–1). Schlussfolgerung: Sowohl ein Proteoglykanverlust als auch Veränderungen im Kollagenfasergerüst beeinflussen die Akkumulation von Gd-DTPA im Gelenkknorpel mit signifikanten Unterschieden zwischen oberflächlichen und tiefen Knorpelschichten.

Abstract

Purpose: Delayed gadolinium-enhanced MR imaging of cartilage is used to quantify the proteoglycan loss in early osteoarthritis. It is assumed that T 1 after Gd-DTPA administration in the near equilibrium state reflects selective proteoglycan loss from cartilage. To investigate the influence of the collagen network integrity on contrast accumulation, the relaxation rates ΔR1 and ΔR2 were compared after Gd-DTPA administration in a well established model of osteoarthritis. Materials and Methods: Collagen or proteoglycan depletion was induced by the proteolytic enzymes papain and collagenase in healthy bovine patellar cartilage. Using a dedicated MRI sequence, T 1 and T 2 maps were simultaneously acquired before and 11 h after Gd-DTPA administration. Depth-dependent profiles of ΔR1 and ΔR2 were calculated in healthy, proteoglycan and collagen-depleted articular cartilage and the mean values of different cartilage layers were compared using the Mann-Whitney-U test. Results: In superficial layers (1 mm) there was no significant difference (p > 0.05) in either ΔR1 or ΔR2 between proteoglycan-depleted (16.6 ± 1.2 s–1, 15.9 ± 1.0 s–1) and collagen-depleted articular cartilage (15.3 ± 0.9 s–1, 15.5 ± 0.9 s–1). In deep layers (3 mm) both parameters were significantly higher (p = 0.005, 0.03) in proteoglycan-depleted articular cartilage (12.3 ± 1.1 s–1, 9.8 ± 0.8 s–1) than in collagen-depleted articular cartilage (9.1 ± 1.1 s–1, 8.7 ± 0.7 s–1). Conclusion: Both proteoglycan loss and alterations in the collagen network influence the accumulation of Gd-DTPA in articular cartilage with significant differences between superficial and deep cartilage layers.

References

  • 1 Calvo E, Palacios I, Delgado E et al. High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis.  Osteoarthritis Cartilage. 2001;  9 463-472
  • 2 Goldring M B. The role of the chondrocyte in osteoarthritis.  Arthritis Rheum. 2000;  43 1916-1926
  • 3 Waldschmidt J G, Rilling R J, Kajdacsy-Balla A A et al. In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls, and pathologic conditions.  Radiographics. 1997;  17 1387-1402
  • 4 Goodwin D W, Wadghiri Y Z, Zhu H et al. Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance.  Am J Roentgenol. 2004;  182 311-318
  • 5 Smith H E, Mosher T J, Dardzinski B J et al. Spatioal Variation in Cartilage T 2 of the Knee.  J Magn Reson Imaging. 2001;  14 50-55
  • 6 Xia Y, Moody J B, Burton-Wurster N et al. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage.  Osteoarthritis Cartilage. 2001;  9 393-406
  • 7 Glaser C, Horng A, Mendlik T et al. T2 relaxation time in patellar cartilage – global and regional reproducibility at 1.5 tesla and 3 tesla.  Fortschr Röntgenstr. 2007;  179 146-152
  • 8 Garnov N, Thörmer G, Gründer W et al. In vivo MRT-Beurteilung der Kollagenstruktur des humanen Kniegelenkknorpels bei 7 T.  Fortschr Röntgenstr. 2010;  182 DOI: 10.1055/s-00300-1252842
  • 9 Horng A, Pagenstert I, Pitschmann M et al. T2-Zeit in matrix-gestützter autologer Chondrozytentransplantation korreliert mit dem IKDC über 2 Jahre.  Fortschr Röntgenstr. 2010;  182 DOI: 10.1055/s-0030-1252844
  • 10 Weiß J. Kniegelenks-Osteoarthritits – Lässt sich ein schneller Knorpelverlust vorhersagen?.  Fortschr Röntgenstr. 2010;  182 106
  • 11 Bashir A, Gray M L, Boutin R D et al. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging.  Radiology. 1997;  205 551-558
  • 12 Boesen M, Jensen K E, Qvistgaard E et al. Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage: better cartilage delineation after intra-articular than intravenous gadolinium injection.  Acta Radiol. 2006;  47 391-396
  • 13 Fischer W, Bohndorf K, Kreitner K F et al. Indications for CT and MR arthrography – recommendations of the Musculoskeletal Workgroup of the DRG.  Fortschr Röntgenstr. 2009;  181 441-446
  • 14 Wiener E, Hodler J, Pfirrmann C W. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.  Acta Radiol. 2009;  50 86-92
  • 15 Kallioniemi A S, Jurvelin J S, Nieminen M T et al. Contrast agent enhanced pQCT of articular cartilage.  Phys Med Biol. 2007;  52 1209-1219
  • 16 Wiener E, Woertler K, Weirich G et al. Contrast enhanced cartilage imaging: Comparison of ionic and non-ionic contrast agents.  Eur J Radiol. 2007;  63 110-119
  • 17 Silvast T S, Kokkonen H T, Jurvelin J S et al. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage.  Phys Med Biol. 2009;  54 6823-6836
  • 18 Krishnan N, Shetty S K, Williams A et al. Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration?.  Arthritis Rheum. 2007;  56 1507-1511
  • 19 McNicol D, Roughley P J. Extraction and characterization of proteoglycan from human meniscus.  Biochem J. 1980;  185 705-713
  • 20 Laurent D, Wasvary J, Rudin M et al. In vivo assessment of macromolecular content in articular cartilage of the goat knee.  Magn Reson Med. 2003;  49 1037-1046
  • 21 Rieppo J, Toyras J, Nieminen M T et al. Structure-function relationships in enzymatically modified articular cartilage.  Cells Tissues Organs. 2003;  175 121-132
  • 22 In den Kleef J JE, Cuppen J JM. RLSQ: T 1, T 2 and Rho Calculations, Combining Ratios and Least Squares.  Magn Reson Med. 1987;  5 513-524
  • 23 Wiener E, Pfirrmann C W, Hodler J. Spatial variation in T 1 of healthy human articular cartilage of the knee joint.  Br J Radiol. 2010;  83 476-485
  • 24 Curtiss P H, Klein Jr L. Destruction of articular cartilage in septic arthritis. I. In vitro studies.  J Bone Joint Surg Am. 1963;  45 797-806
  • 25 Paul P K, O’Byrne E, Blancuzzi V et al. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee.  Skeletal Radiol. 1991;  20 31-36
  • 26 O’Connor P, Brereton J D, Gardner D L. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.  Ann Rheum Dis. 1984;  43 320-326
  • 27 Murray D G. Experimentally Induced Arthritis Using Intra-Articular Papain.  Arthritis Rheum. 1964;  18 211-219
  • 28 Mc Cluskey R T, Thomas L. The removal of cartilage matrix, in vivo, by papain; identification of crystalline papain protease as the cause of the phenomenon.  J Exp Med. 1958;  108 371-384
  • 29 Farkas T, Bihari-Varga M, Biro T. Thermoanalytical and histological study of intra-articular papain-induced degradation and repair of rabbit cartilage. I. Immature animals.  Ann Rheum Dis. 1974;  33 385-390
  • 30 Kikuchi T, Sakuta T, Yamaguchi T. Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits.  Osteoarthritis Cartilage. 1998;  6 177-186
  • 31 Wagner M, Werner A, Grunder W. Visualization of collagenase-induced cartilage degradation using NMR microscopy.  Invest Radiol. 1999;  34 607-614
  • 32 Kempson G E, Tuke M A, Dingle J T et al. The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage.  Biochim Biophys Acta. 1976;  428 741-760
  • 33 Bruns J, Steinhagen J. Lesions of articular cartilage and osteoarthrosis – Biological background.  Deutsche Zeitschrift für Sportmedizin. 2000;  51 42-47
  • 34 Stockwell R A. Cartilage failure in osteoarthritis: relevance of normal structure and function. A review.  Clinical Anatomy. 1991;  4 161-191
  • 35 Hollander A P, Pidoux I, Reiner A et al. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration.  J Clin Invest. 1995;  96 2859-2869
  • 36 Gelse K, der Mark von K, Aigner T et al. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells.  Arthritis Rheum. 2003;  48 430-441
  • 37 Torzilli P A, Arduino J M, Gregory J D et al. Effect of proteoglycan removal on solute mobility in articular cartilage.  J Biomech. 1997;  30 895-902
  • 38 Torzilli P A. Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage.  Med Biol Eng Comput. 1993;  31 S93-S98
  • 39 Xia Y, Zheng S, Bidthanapally A. Depth-dependent profiles of glycosaminoglycans in articular cartilage by microMRI and histochemistry.  J Magn Reson Imaging. 2008;  28 151-157
  • 40 Knopp M V, Balzer T, Esser M et al. Assessment of utilization and pharmacovigilance based on spontaneous adverse event reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after 45 million administrations and 15 years of clinical use.  Invest Radiol. 2006;  41 491-499
  • 41 Maroudas A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport.  Biorheology. 1975;  12 233-248
  • 42 Comper W D. Physicochemical aspects of cartilage extracellular matrix. In Cartilage: Molecular Aspects. Boston: CRC; 1991: 59-96
  • 43 Langsjo T K, Hyttinen M, Pelttari A et al. Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling.  J Anat. 1999;  195 281-293
  • 44 Alford J W, Cole B J. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options.  Am J Sports Med. 2005;  33 295-306
  • 45 Bullough P G, Yawitz P S, Tafra L et al. Topographical variations in the morphology and biochemistry of adult canine tibial plateau articular cartilage.  J Orthop Res. 1985;  3 1-16
  • 46 Weiss C, Mirow S. An ultrastructural study of osteoarthritis changes in the articular cartilage of human knees.  J Bone Joint Surg Am. 1972;  54 954-972
  • 47 Muir H, Bullough P, Maroudas A. The distribution of collagen in human articular cartilage with some of its physiological implications.  J Bone Joint Surg Br. 1970;  52 554-563
  • 48 Fishbein K W, Gluzband Y A, Spencer R GS. Measurements of Fixed Charge Density in Bovine Nasal Cartilage using Gd-DOTA.  Proc Intl Soc Mag Reson Med. 2002;  10 65
  • 49 Bolis S, Handley C J, Comper W D. Passive loss of proteoglycan from articular cartilage explants.  Biochim Biophys Acta. 1989;  993 157-167
  • 50 Pintaske J, Martirosian P, Graf H et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla.  Invest Radiol. 2006;  41 213-221
  • 51 Giesel F L, Tengg-Kobligk von H, Wilkinson I D et al. Influence of human serum albumin on longitudinal and transverse relaxation rates (r1 and r2) of magnetic resonance contrast agents.  Invest Radiol. 2006;  41 222-228
  • 52 Herborn C U, Jager-Booth I, Lodemann K P et al. Multicenter analysis of tolerance and clinical safety of the extracellular MR contrast agent gadobenate dimeglumine (MultiHance).  Fortschr Röntgenstr. 2009;  181 652-657
  • 53 Reichenbach J R, Hacklander T, Harth T et al. 1 H T 1 and T 2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5 T.  Eur Radiol. 1997;  7 264-274
  • 54 Wiener E, Settles M, Diederichs G. T2 relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.  Contrast Media Mol Imaging. 2010;  5 99-104

Dr. Edzard Wiener

Institut für Radiologie, Charité Universitätsmedizin Berlin

Charitéplatz 1

10117 Berlin

Phone: ++ 49/30/4 50 52 71 02

Fax: ++ 49/30/4 50 52 79 03

Email: edzard.wiener@charite.de

    >