Rofo 2011; 183(1): 54-59
DOI: 10.1055/s-0029-1245629
Herz

© Georg Thieme Verlag KG Stuttgart · New York

Whole-Heart 320-Row Computed Tomography: Reduction of Radiation Dose via Prior Coronary Calcium Scanning

Dosisreduktionsmöglichkeiten in der 320-Zeilen-CTA der Koronararterien mittels vorherigen KalziumscoringsE. Zimmermann1 , M. Dewey1
  • 1Radiologie, Charité – Universitätsmedizin Berlin
Further Information

Publication History

received: 21.1.2010

accepted: 5.7.2010

Publication Date:
19 August 2010 (online)

Zusammenfassung

Ziel: Mit der 320-Zeilen-CT-Angiografie (CTA) ist es möglich, einen Scanbereich von bis zu 16 cm in einer Rotation abzubilden. Die meisten Herzen sind jedoch deutlich kleiner. Wir überprüften, ob mithilfe eines vor der CTA durchgeführten nativen Kalziumscorings der Scanbereich für die CTA individuell eingegrenzt werden kann. Material und Methoden: 45 Patienten mit Verdacht auf eine KHK (13 Frauen, 32 Männer, 61 ± 9,6 Jahre) unterzogen sich einer nicht invasiven Koronararteriendarstellung mittels 320-Zeilen-CTA (Aquilion ONE, Toshiba; 0,35 s Gantryrotationszeit, 120 kV, 350 – 450 mA). Vorab wurde ein niedriger dosiertes Kalziumscoring mit 16 cm Scanbreite durchgeführt (120 kV, 150 mA). Für die sich anschließende CTA wurde die erhobene Herzgröße (+ 1 cm) als Scanbereich genutzt. Ergebnisse: Der genutzte CTA-Scanbereich betrug 12,1 ± 0,5 cm basierend auf mittleren Herzausdehnungen entlang der Z-Achse von 9,6 ± 1,1 cm. Die Gesamtdosis von Kalziumscoring und CTA war signifikant geringer als die berechnete Dosis für die CTA mit 16 cm Scanbreite (8,5 ± 4,7 vs. 9,1 ± 6,0 mSv; p = 0,006). Die Dosisreduktion war am stärksten ausgeprägt bei Patienten (n = 10) mit 2 oder 3 Herzschlägen für die CTA (17,7 ± 6,5 vs. 21,1 ± 8,4 mSv, p = 0,001). Schlussfolgerung: Die 320-Zeilen-CTA des Herzens mittels adaptierten Scanbereichs basierend auf einem vorgeschalteten niedrig dosierten Kalziumscoring reduziert die Strahlenexposition im Vergleich zu der nicht adaptierten CTA.

Abstract

Purpose: The whole heart can be scanned in one rotation using 320-row coronary computed tomography angiography (CCTA), which covers up to 16 cm. Since most hearts are smaller, the total radiation dose may be reduced by adjusting the CCTA range to the individual heart size defined on a low-dose calcium scan (CACS). Materials and Methods: Forty-five patients with suspected coronary artery disease (13 women, 32 men; mean 61 ± 10 years) underwent CCTA preceded by low-dose CACS on a 320-row scanner (Aquilion ONE, Toshiba; 0.35 s gantry rotation, 120 kV, 350 – 450 mA) with 16-cm z-axis coverage (120 kV, 150 mA). The subsequent CCTA was performed over an adjusted scan range calculated as the individual heart size on CACS (+ 1 cm above and below). The total radiation dose of 16-cm CACS and the individually adjusted CCTA was compared with that of a calculated single CCTA using full 16-cm z-axis coverage. Results: CCTA could be performed with a reduced scan length in the z-axis in all patients. None of the scans had to be performed over the whole range of 16 cm. The adjusted scan length was 14 cm in 2 patients, 12.8 cm in 3 patients, and 12 cm in 40 patients. The effective CCTA scan range was 12.1 ± 0.5 cm based on mean individual heart sizes of 9.6 ± 1.1 cm. The mean total effective radiation dose of the entire cardiac CT examination (individually adapted CCTA and CACS) was significantly smaller than the exposure calculated for 16-cm CCTA without CACS (8.5 ± 4.7 vs. 9.1 ± 6.0 mSv, p = 0.006). The dose reduction was most relevant in patients with heart rates above 65 beats/min (n = 10) in whom 2 or 3 heartbeats were necessary for CCTA (17.7 ± 6.5 vs. 21.1 ± 8.4 mSv, p = 0.001). Conclusion: 320-row CCTA with an individually adjusted scan range based on prior CACS significantly reduces the radiation exposure compared with full 16-cm CCTA.

References

  • 1 Hahn D. Moderne Schnittbilddiagnostik des Herzens, MRT oder MSCT?.  Fortschr Röntgenstr. 2004;  176 1215-1218
  • 2 Dewey M, Hamm B. CT coronary angiography: examination technique, clinical results, and outlook on future developments.  Fortschr Röntgenstr. 2007;  179 246-260
  • 3 Fischbach R, Miller S, Beer M et al. Recommendations of the Heart Diagnosis Working Group of the German Roentgen Society for use of computerized tomography and magnetic resonance tomography in heart diagnosis. 1– Computerized tomography.  Fortschr Röntgenstr. 2009;  181 700-706
  • 4 Dewey M, Vries de H, Vries de L et al. The present and future of cardiac CT in research and clinical practice: moderated discussion and scientific debate with representatives from the four main vendors.  Fortschr Röntgenstr. 2010;  182 313-321
  • 5 Schuetz G M, Zacharopoulou N M, Schlattmann P et al. Meta-analysis: Noninvasive Coronary Angiography Using Computed Tomography versus Magnetic Resonance Imaging.  Ann Intern Med. 2010;  152 167-177
  • 6 Maurer M H, Hamm B, Dewey M. Survey regarding the clinical practice of cardiac CT in Germany: indications, scanning technique and reporting.  Fortschr Röntgenstr. 2009;  181 1135-1143
  • 7 Zimmermann E, Germershausen C, Greupner J et al. Improvement of Skills and Knowledge by a Hands-on Cardiac CT Course: Before and After Evaluation with a Validated Questionnaire and Self-Assessment.  Fortschr Röntgenstr. 2010;  182 589-593
  • 8 Dewey M, Hoffmann H, Hamm B. CT Coronary Angiography Using 16 and 64 Simultaneous Detector Rows: Intraindividual Comparison.  Fortschr Röntgenstr. 2007;  179 581-586
  • 9 Earls J P, Berman E L, Urban B A et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose.  Radiology. 2008;  246 742-753
  • 10 Anders K, Baum U, Gauss S et al. Initial experience with prospectively triggered, sequential CT coronary angiography on a 128-slice scanner.  Fortschr Röntgenstr. 2009;  181 332-338
  • 11 Dewey M, Zimmermann E, Deissenrieder F et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation.  Circulation. 2009;  120 867-875
  • 12 Rybicki F J, Otero H J, Steigner M L et al. Initial evaluation of coronary images from 320-detector row computed tomography.  Int J Cardiovasc Imaging. 2008;  24 535-546
  • 13 Dewey M, Zimmermann E, Deissenrieder F et al. Noninvasive Coronary Angiography by 320-Row CT with Lower Radiation Exposure and Maintained Diagnostic Accuracy: Comparison of Results with Cardiac Catheterization in a Head-To-Head Pilot Investigation.  Circulation. 2009;  120 867-875
  • 14 Leschka S, Wildermuth S, Boehm T et al. Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality.  Radiology. 2006;  241 378-385
  • 15 Dewey M, Hoffmann H, Hamm B. Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries.  Fortschr Röntgenstr. 2006;  178 600-604
  • 16 Stamm G, Nagel H D. CT-expo – a novel program for dose evaluation in CT.  Fortschr Röntgenstr. 2002;  174 1570-1576
  • 17 Heyer C M, Peters S, Lemburg S. Structure of the meeting of the german radiological society and scientific discourse pertaining to radiation dose and dose reduction: an analysis of 1998 – 2008.  Fortschr Röntgenstr. 2009;  181 1065-1072
  • 18 Gopal A, Budoff M J. A new method to reduce radiation exposure during multi-row detector cardiac computed tomographic angiography.  Int J Cardiol. 2009;  132 435-436
  • 19 Leschka S, Kim C H, Baumueller S et al. Scan length adjustment of CT coronary angiography using the calcium scoring scan: effect on radiation dose.  Am J Roentgenol. 2010;  194 W272-W277
  • 20 Brown E R, Kronmal R A, Bluemke D A et al. Coronary calcium coverage score: determination, correlates, and predictive accuracy in the Multi-Ethnic Study of Atherosclerosis.  Radiology. 2008;  247 669-675
  • 21 Gottlieb I, Miller J M, Arbab-Zadeh A et al. The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography.  J Am Coll Cardiol. 2010;  55 627-634
  • 22 Muhlenbruch G, Wildberger J E, Koos R et al. Coronary calcium scoring using 16-row multislice computed tomography: nonenhanced versus contrast-enhanced studies in vitro and in vivo.  Invest Radiol. 2005;  40 148-154
  • 23 Stolzmann P, Leschka S, Scheffel H et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose.  Radiology. 2008;  249 71-80
  • 24 Klass O, Jeltsch M, Feuerlein S et al. Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique.  Eur Radiol. 2009;  19 829-836
  • 25 Steigner M L, Otero H J, Cai T et al. Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography.  Int J Cardiovasc Imaging. 2009;  25 85-90
  • 26 Klass O, Walker M, Siebach A et al. Prospectively gated axial CT coronary angiography: comparison of image quality and effective radiation dose between 64- and 256-slice CT.  Eur Radiol. 2010;  epub
  • 27 Leschka S, Stolzmann P, Desbiolles L et al. Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience.  Eur Radiol. 2009;  19 2896-2903
  • 28 Achenbach S, Marwan M, Ropers D et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition.  Eur Heart J. 2010;  31 340-346
  • 29 Pannu H K, Alvarez Jr W, Fishman E K. Beta-blockers for cardiac CT: a primer for the radiologist.  Am J Roentgenol. 2006;  186 S341-345
  • 30 Lell M, Marwan M, Schepis T et al. Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience.  Eur Radiol. 2009;  19 2576-2583

PD Dr. Marc Dewey

Radiologie, Charité – Universitätsmedizin Berlin

Charitéplatz 1

10117 Berlin

Germany

Phone: ++ 49/30/4 05 52 72 96

Fax: ++ 49/30/4 05 52 79 96

Email: dewey@charite.de

    >