J Reconstr Microsurg 2010; 26(2): 117-121
DOI: 10.1055/s-0029-1243296
© Thieme Medical Publishers

Extracorporeal Shock Wave Treatment in Ischemic Tissues: What is the Appropriate Number of Shock Wave Impulses?

Florian Kamelger1 , Markus Oehlbauer2 , 3 , Hildegunde Piza-Katzer2 , 3 , Romed Meirer1 , 3 , 4
  • 1Medical University of Innsbruck, Innsbruck Medical University, Innsbruck, Austria
  • 2Ludwig Boltzmann Institute for Quality Control in Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
  • 3Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
  • 4Aesthetic Austria GmbH, Woergl, Austria
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
10. Dezember 2009 (online)

ABSTRACT

The dose-dependent effect of extracorporeal shock wave technology (ESWT) was evaluated using a murine skin flap model. Thirty-six Sprague-Dawley rats were divided into six groups (ESWT groups 1 through 5 and a control group). After surgery, shock wave impulses doses were administered: 200 (group 1), 500 (group 2), 1500 (group 3), 2500 (group 4), 5000 (group 5), and 0 (control group 6). Flap viability was evaluated on day 7. Overall, significantly smaller percentages of necrotic zones were observed in groups 2, 3, and 4 compared with groups 1, 5, and the control group (p < 0.05). ESWT treatment with 200 impulses was found to be ineffective. ESWT treatment of 5000 impulses resulted in a significant increase in the percentage of necrosis compared with other ESWT groups (p < 0.05). However, ESWT treatments between 500 and 2500 impulses at 0.11 mJ/mm2 enhanced epigastric skin flap survival significantly.

REFERENCES

  • 1 Köhrmann K U, Neisius D, Rassweiler J. [The future of ESWL].  Urologe A. 2008;  47 569-570 572-577
  • 2 Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union.  Clin Orthop Relat Res. 2001;  387 90-94
  • 3 Wang C J, Wang F S, Yang K D, Weng L H, Sun Y C, Yang Y J. The effect of shock wave treatment at the tendon-bone interface-an histomorphological and biomechanical study in rabbits.  J Orthop Res. 2005;  23 274-280
  • 4 Wang C J. An overview of shock wave therapy in musculoskeletal disorders.  Chang Gung Med J. 2003;  26 220-232
  • 5 Wang L, Qin L, Lu H B et al.. Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.  Am J Sports Med. 2008;  36 340-347
  • 6 Meirer R, Kamelger F S, Huemer G M, Wanner S, Piza-Katzer H. Extracorporal shock wave may enhance skin flap survival in an animal model.  Br J Plast Surg. 2005;  58 53-57
  • 7 Tanaka N, Kaneko M. Skin surface shock wave.  Conf Proc IEEE Eng Med Biol Soc. 2006;  1 4123-4126
  • 8 Kuo Y R, Wu W S, Hsieh Y L et al.. Extracorporeal shock wave enhanced extended skin flap tissue survival via increase of topical blood perfusion and associated with suppression of tissue pro-inflammation.  J Surg Res. 2007;  143 385-392
  • 9 Huemer G M, Meirer R, Gurunluoglu R et al.. Comparison of the effectiveness of gene therapy with transforming growth factor-beta or extracorporal shock wave therapy to reduce ischemic necrosis in an epigastric skin flap model in rats.  Wound Repair Regen. 2005;  13 262-268
  • 10 Meirer R, Brunner A, Deibl M, Oehlbauer M, Piza-Katzer H, Kamelger F S. Shock wave therapy reduces necrotic flap zones and induces VEGF expression in animal epigastric skin flap model.  J Reconstr Microsurg. 2007;  23 231-236
  • 11 Meirer R, Huemer G M, Oehlbauer M, Wanner S, Piza-Katzer H, Kamelger F S. Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats.  J Plast Reconstr Aesthet Surg. 2007;  60 266-271
  • 12 Meirer R, Kamelger F S, Piza-Katzer H. Shock wave therapy: an innovative treatment method for partial thickness burns.  Burns. 2005;  31 921-922
  • 13 Padubidri A N, Browne Jr E. Modification in flap design of the epigastric artery flap in rats—a new experimental flap model.  Ann Plast Surg. 1997;  39 500-504
  • 14 Wang F S, Yang K D, Chen R F, Wang C J, Sheen-Chen S M. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1.  J Bone Joint Surg Br. 2002;  84 457-461
  • 15 Chen Y J, Wang C J, Yang K D et al.. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression.  J Orthop Res. 2004;  22 854-861
  • 16 Chen Y J, Wurtz T, Wang C J et al.. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats.  J Orthop Res. 2004;  22 526-534
  • 17 Zogović J. [Extracorporeal shock wave lithotripsy: prophylaxis, complications and therapy].  Srp Arh Celok Lek. 1997;  125 345-348
  • 18 Gerdesmeyer L, Maier M, Haake M, Schmitz C. [Physical-technical principles of extracorporeal shockwave therapy (ESWT)].  Orthopade. 2002;  31 610-617
  • 19 Fuchs G J, David R D, Fuchs A M. [Complications of extracorporeal shockwave lithotripsy].  Arch Esp Urol. 1989;  42(Suppl 1) 83-89
  • 20 Wang C J, Huang H Y, Yang K, Wang F S, Wong M. Pathomechanism of shock wave injuries on femoral artery, vein and nerve. An experimental study in dogs.  Injury. 2002;  33 439-446
  • 21 Wang C J, Wang F S, Huang C C, Yang K D, Weng L H, Huang H Y. Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting.  J Bone Joint Surg Am. 2005;  87 2380-2387

Dr. Romed Meirer

Aesthetic Austria GmbH

Fritz-Atzl-Strasse 8, 6300 Woergl, Austria

eMail: romed.meirer@aestheticaustria.com