Z Orthop Unfall 2010; 148(2): 149-154
DOI: 10.1055/s-0029-1240754
Forschung

© Georg Thieme Verlag KG Stuttgart · New York

Perspektiven klinischer mesenchymaler Stammzelltherapie bei muskuloskeletalen Erkrankungen in Deutschland

Perspectives of Clinical Stem Cell Therapy in the Treatment of Musculoskeletal Diseases in GermanyP. Kasten1 , P. Bernstein1 , A. Biewener2 , M. Bornhäuser3 , G. Duda4 , C. Gaissmaier5 , U. Nöth6 , B. Pfüller7 , J. Reinhardt8 , H. Zwipp2 , K.-P. Günther1
  • 1Klinik und Poliklinik für Orthopädie, Universitätsklinikum Carl Gustav Carus Dresden
  • 2Klinik für Unfall- und Wiederherstellungschirurgie, Universitätsklinikum Carl Gustav Carus Dresden
  • 3Center for Regenerative Therapies Dresden, Technische Universität Dresden
  • 4Universitätsmedizin Berlin, Julius Wolff Institute & Center for Musculosceletal Surgery, Charité, Berlin
  • 5Deutsche Gesellschaft für Orthopädie und Unfallchirurgie, Arbeitsgemeinschaft Gewebeersatz und Geweberegeneration, Tübingen
  • 6Orthopädische Klinik, Lehrstuhl für Orthopädie der Universität Würzburg
  • 7Clinical Trials and Regulatory Affairs, Berlin-Brandenburg Center for Regenerative Therapies, Berlin
  • 8Abteilung für Medizinische Biotechnologie, Paul-Ehrlich Institut, Langen
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
28. Januar 2010 (online)

Zusammenfassung

Studienziel: Die Behandlung großer Knochendefekte nach Tumorresektionen, bei Endoprothesenwechseloperationen oder in der Frakturversorgung stellt in der Chirurgie des Bewegungsapparats häufig ein Problem dar. Aufgrund der mit dem Einsatz von Knochentransplantaten und Knochenersatzstoffen verbundenen Probleme besteht ein Bedarf nach Versorgungsalternativen. Eine mögliche Option sind regenerative Therapieansätze mit mesenchymalen Stammzellen (MSC). Material und Methodik: Anlässlich eines Expertenworkshops der Deutschen Gesellschaft für Orthopädie und Unfallchirurgie wurde die bisherige Datenlage zum Einsatz von MSC im experimentellen und klinischen Bereich zusammengefasst und das Potenzial zur künftigen Durchführung klinischer Studien geprüft. Ergebnisse: In-vitro-Untersuchungen und tierexperimentelle Studien zeigen positive Effekte von MSC bei der Behandlung von Knochendefekten. In der vorliegenden Arbeit werden die gesetzlichen Rahmenbedingungen skizziert, die zur Durchführung klinischer Prüfungen von MSC eingehalten werden müssen. Ferner werden wissenschaftliche und regulatorische Aspekte für eine erfolgreiche Antragstellung diskutiert. Schlussfolgerung: Es sind weitere klinische Studien erforderlich, um das tatsächliche Potenzial der Applikation mesenchymaler Stammzellen bei Erkrankungen und Verletzungen des Bewegungsapparats einschätzen zu können. Bei der Planung und Durchführung sind im Rahmen der geltenden gesetzlichen Vorgaben auch spezifische Anforderungen zu berücksichtigen (z. B. GMP-gerechte Fertigung, GLP-gerechte Tierstudien), die eine verstärkte Zusammenarbeit der Forschungszentren sinnvoll machen. Darüber hinaus sind frühzeitige Beratungen durch die regulatorischen Behörden empfehlenswert, um eine Zulassung als Voraussetzung für die Standardtherapie mit MSC zu erhalten.

Abstract

Aim: The treatment of large bone defects remains a challenge for the orthopaedic surgeon. Regenerative therapies with the use of mesenchymal stem cells (MSC) may provide an alternative to autogenous bone transplantation, callus distraction or the use of allografts. Material and Methods: On the occasion of an expert workshop of the German Society for Orthopaedic and Trauma Surgery, a literature search regarding studies with the use of MSC was performed to evaluate its potential for future clinical studies. Furthermore, the legislative requirements were examined. Results: Various in vitro and animal studies showed the benefit of MSC in bone regeneration. However, there are sparse data from clinical studies. Due to recent legislative changes there are several regulatory demands to meet if clinical studies are performed with MSC. Conclusions: For further evaluation of the role of MSC in the treatment of bone defects there is a need for clinical trials. The current paper provides some assistance for the successful application for clinical trials with MSC. Planning and performance of these studies may require early consultation with the regulatory authorities and cooperation of research centres in order to obtain authorisation for the evaluation of MSC. Preclinical data have to be obtained according to good laboratory practice with equivalent protocols that will be used in the clinical trials. In the latter the implementation of the guidelines for good clinical practice are mandatory.

Literatur

  • 1 Vacanti C A, Bonassar L J. An overview of tissue engineered bone.  Clin Orthop Relat Res. 1999;  367 (Suppl.) S375-S381
  • 2 Ohgushi H, Caplan A I. Stem cell technology and bioceramics: from cell to gene engineering.  J Biomed Mater Res. 1999;  48 913-927
  • 3 Caplan A I. Mesenchymal stem cells and gene therapy.  Clin Orthop. 2000;  379 (Suppl.) S67-S70
  • 4 Rentsch C, Rentsch B, Breier A et al. Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats.  J Biomed Mater Res A. 2010;  92 185-195
  • 5 Lazarus H M, Haynesworth S E, Gerson S L et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use.  Bone Marrow Transplant. 1995;  16 557-564
  • 6 Schaefer D, Martin I, Shastri P et al. In vitro generation of osteochondral composites.  Biomaterials. 2000;  21 2599-2606
  • 7 Puelacher W C, Vacanti J P, Ferraro N F et al. Femoral shaft reconstruction using tissue-engineered growth of bone.  Int J Oral Maxillofac Surg. 1996;  25 223-228
  • 8 Quarto R, Mastrogiacomo M, Cancedda R et al. Repair of large bone defects with the use of autologous bone marrow stromal cells.  N Engl J Med. 2001;  344 385-386
  • 9 Marcacci M, Kon E, Zaffagnini S et al. Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges.  Calcif Tissue Int. 1999;  64 83-90
  • 10 Schaefer D J, Klemt C, Zhang X H et al. Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration.  Chirurg. 2000;  71 1001-1008
  • 11 Young R G, Butler D L, Weber W et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair.  J Orthop Res. 1998;  16 406-413
  • 12 Yamada Y, Ueda M, Naiki T et al. Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration.  Tissue Eng. 2004;  10 955-964
  • 13 Gan Y, Dai K, Zhang P et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion.  Biomaterials. 2008;  29 3973-3982
  • 14 Gangji V, Hauzeur J P, Matos C et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study.  J Bone Joint Surg [Am]. 2004;  86 1153-1160
  • 15 Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting.  Clin Orthop Relat Res. 2002;  405 14-23
  • 16 Hernigou P, Poignard A, Beaujean F et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells.  J Bone Joint Surg [Am]. 2005;  87 1430-1437
  • 17 Kasten P, Beyen I, Egermann M et al. Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro.  Eur Cell Mater. 2008;  16 47-55
  • 18 Kasten P, Vogel J, Luginbuhl R et al. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.  Cells Tissues Organs. 2006;  183 68-79
  • 19 Campagnoli C, Roberts I A, Kumar S et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow.  Blood. 2001;  98 2396-2402
  • 20 Phinney D G, Kopen G, Righter W et al. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.  J Cell Biochem. 1999;  75 424-436
  • 21 Kasten P, Vogel J, Luginbuhl R et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.  Biomaterials. 2005;  26 5879-5889
  • 22 Reyes M, Lund T, Lenvik T et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.  Blood. 2001;  98 2615-2625
  • 23 Arinzeh T L, Peter S J, Archambault M P et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect.  J Bone Joint Surg [Am]. 2003;  85 1927-1935
  • 24 Bruder S P, Kurth A A, Shea M et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells.  J Orthop Res. 1998;  16 155-162
  • 25 Bensaid W, Oudina K, Viateau V et al. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model.  Tissue Eng. 2005;  11 814-824
  • 26 Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model.  J Orthop Res. 2006;  24 610-618
  • 27 Kalia P, Blunn G W, Miller J et al. Do autologous mesenchymal stem cells augment bone growth and contact to massive bone tumor implants?.  Tissue Eng. 2006;  12 1617-1626
  • 28 Korda M, Blunn G, Goodship A et al. Use of mesenchymal stem cells to enhance bone formation around revision hip replacements.  J Orthop Res. 2008;  26 880-885
  • 29 Connolly J F, Guse R, Tiedeman J et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions.  Clin Orthop Relat Res. 1991;  266 259-270
  • 30 Wright J G, Yandow S, Donaldson S et al. A randomized clinical trial comparing intralesional bone marrow and steroid injections for simple bone cysts.  J Bone Joint Surg [Am]. 2008;  90 722-730
  • 31 Wakitani S, Nawata M, Tensho K et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees.  J Tissue Eng Regen Med. 2007;  1 74-79
  • 32 Wakitani S, Mitsuoka T, Nakamura N et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports.  Cell Transplant. 2004;  13 595-600
  • 33 Kuroda R, Ishida K, Matsumoto T et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells.  Osteoarthritis Cartilage. 2007;  15 226-231
  • 34 Marcacci M, Kon E, Moukhachev V et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study.  Tissue Eng. 2007;  13 947-955
  • 35 Kitoh H, Kitakoji T, Tsuchiya H et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis – a preliminary result of three cases.  Bone. 2004;  35 892-898
  • 36 Kitoh H, Kitakoji T, Tsuchiya H et al. Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma.  J Pediatr Orthop. 2007;  27 629-634
  • 37 Kitoh H, Kitakoji T, Tsuchiya H et al. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones.  Bone. 2007;  40 522-528
  • 38 Jimenez M L, Lyon T R, Nowinski G et al. High dose stem and progenitor cell therapy for refractory long bone nonunions: final results of a multi-center phase I/II clinical study. 2007 Paper at Orthopaedic Trauma Association
  • 39 Nöth U, Reichert J, Reppenhagen S et al. [Cell based therapy for the treatment of femoral head necrosis].  Orthopade. 2007;  36 466-471
  • 40 Bernstein P, Bornhauser M, Gunther K P et al. Knochen Tissue Engineering in der klinischen Anwendung – eine Standortbestimmung.  Orthopade. 2009;  , in press
  • 41 Dazzi F, Ramasamy R, Glennie S et al. The role of mesenchymal stem cells in haemopoiesis.  Blood Rev. 2006;  20 161-171
  • 42 Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?.  Trends Immunol. 2007;  28 219-226
  • 43 Le Blanc K, Tammik C, Rosendahl K et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells.  Exp Hematol. 2003;  31 890-896
  • 44 Le Blanc K, Frassoni F, Ball L et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study.  Lancet. 2008;  371 1579-1586
  • 45 Djouad F, Bony C, Apparailly F et al. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells.  Transplantation. 2006;  82 1060-1066
  • 46 Zhu W, Xu W, Jiang R et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo.  Exp Mol Pathol. 2006;  80 267-274
  • 47 Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses.  Blood. 2005;  105 1815-1822
  • 48 Warnke P H, Springer I N, Wiltfang J et al. Growth and transplantation of a custom vascularised bone graft in a man.  Lancet. 2004;  364 766-770
  • 49 Neen D, Noyes D, Shaw M et al. Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft.  Spine. 2006;  31 E636-E640
  • 50 Dallari D, Savarino L, Stagni C et al. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells.  J Bone Joint Surg [Am]. 2007;  89 2413-2420
  • 51 Schmid U, Thielemann F, Weise K et al. [A novel therapeutic approach to bone replacement: vitalisation of industrial processed allogenic bone graft with autologous bone marrow].  Z Orthop Unfall. 2007;  145 221-229
  • 52 Ochs B G, Schmid U, Rieth J et al. Acetabular bone reconstruction in revision arthroplasty: a comparison of freeze-dried, irradiated and chemically-treated allograft vitalised with autologous marrow versus frozen non-irradiated allograft.  J Bone Joint Surg [Br]. 2008;  90 1164-1171
  • 53 Park I H, Micic I D, Jeon I H. A study of 23 unicameral bone cysts of the calcaneus: open chip allogeneic bone graft versus percutaneous injection of bone powder with autogenous bone marrow.  Foot Ankle Int. 2008;  29 164-170
  • 54 Zamzam M M, Abak A A, Bakarman K A et al. Efficacy of aspiration and autogenous bone marrow injection in the treatment of simple bone cysts.  Int Orthop. 2009;  33 1353-1358 , Epub 2008 Jul 12
  • 55 Jäger M, Jelinek E M, Wess K M et al. Bone marrow concentrate: a novel strategy for bone defect treatment.  Curr Stem Cell Res Ther. 2009;  4 34-43

Priv.-Doz. Dr. Philip Kasten

Klinik und Poliklinik für Orthopädie
Universitätsklinikum Carl Gustav Carus Dresden

Fetscherstraße 74

01307 Dresden

Telefon: 03 51/4 58-50 06

Fax: 03 51/4 58-43 76

eMail: philip.kasten@uniklinikum-dresden.de