Subscribe to RSS
DOI: 10.1055/s-0029-1240582
© Georg Thieme Verlag KG Stuttgart · New York
Triterpenoids with Acetylcholinesterase Inhibition from Chuquiraga erinacea D. Don. subsp. erinacea (Asteraceae)
Publication History
received August 19, 2009
revised October 13, 2009
accepted October 18, 2009
Publication Date:
16 November 2009 (online)
Abstract
A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE) inhibitory agents in the ethanolic extract of Chuquiraga erinacea D. Don. subsp. erinacea leaves using a bioautographic method. This permitted the isolation of the pentacyclic triterpenes calenduladiol (1), faradiol (2), heliantriol B2 (3), lupeol (4), and a mixture of α-and β-amyrin (5a and 5b) as active constituents. Pseudotaraxasterol (6) and taraxasterol (7) were also isolated from this extract and showed no activity at the same analytical conditions. Compound 1 showed the highest AChE inhibitory activity with 31.2 % of inhibition at 0.5 mM. Looking forward to improve the water solubility of the active compounds, the sodium sulfate ester of 1 was prepared by reaction with the (CH3)3 N.SO3 complex. The semisynthetic derivative disodium calenduladiol disulfate (8) elicited higher AChE inhibition than 1 with 94.1 % of inhibition at 0.5 mM (IC50 = 0.190 ± 0.003 mM). Compounds 1, 2, 3, 5, 6, and 7 are reported here for the first time in C. erinacea. This is the first report of AChE inhibition from calenduladiol (1) as well as from a sulfate derived from a natural product.
Key words
acetylcholinesterase inhibitors - Chuquiraga erinacea - Asteraceae - pentacyclic triterpenes - Alzheimer's disease
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Houghton P J, Ren Y, Howes M J. Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep. 2006; 23 181-199
- 2 Loizzo M R, Tundis R, Menichini F, Menichini F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: an update. Curr Med Chem. 2008; 15 1209-1228
- 3 Orhan G, Orhan I, Subutay-Öztekin N, Ak F, Sener B. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer's disease. Recent Pat CNS Drug Discov. 2009; 4 43-51
- 4 Forcone A. Hierbas y arbustos frecuentes en el Valle Inferior del río Chubut, 1st edition. Bahía Blanca, Argentina; EdiUNS 2004: 1-116
- 5 Casamiquela R M, Beeskow A M, Gavirati M, Stanganelli M, Mavrek V. Usos Tradicionales de las Plantas en la Meseta Patagónica. CENPAT – CONICET – ICBG. 2002; 1-51
- 6 Zuloaga F O, Morrone O. Asteraceae. Catálogo de las Plantas Vasculares de la República Argentina II. Monographs in systematic botany from the Missouri Botanical Garden, Vol. 74. St. Louis, Missouri, USA; Missouri Botanical Garden 1999: 1-255
- 7 Juárez B E, Mendiondo M E. Flavonoid chemistry of Chuquiraga (Asteraceae). Biochem Syst Ecol. 2002; 4 371-373
- 8 Flagg M L, Valcic S, Montenegro G, Gomez M, Timmermann N. Pentacyclic triterpenes from Chuquiraga ulicina. Phytochemistry. 1999; 52 1345-1350
- 9 Murray A P, Vela Gurovic M S, Rodriguez S A, Murray M G, Ferrero A A. Acetylcholinesterase inhibition and antioxidant activity in essential oils from Schinus areira L. and Schinus longifolia (Lindl.) Speg. Nat Prod Commun. 2009; 4 873-876
- 10 Ellman G L, Courtney K D, Andres V, Featherstone R M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7 88-95
- 11 Rhee I K, van de Meent M, Ingkaninan K, Verpoorte R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin layer chromatography in combination with bioactivity staining. J Chromatogr A. 2001; 915 217-223
- 12 Wenkert E, Baddeley G V, Burfitt I R, Moreno L N. Carbon-13 nuclear magnetic resonance spectroscopy of naturally-occurring substances LVII. Triterpenes related to lupane and hopane. Org Magn Reson. 1978; 11 337-343
- 13 Della Loggia R, Tubaro A, Sosa S, Becker H, Saar S, Isaac O. The role of triterpenoids in the topical anti-inflammatory activity of Calendula officinalis flowers. Planta Med. 1994; 60 516-520
- 14 Reynolds W F, Mc Lean S, Poplawski J, Enriquez R G, Escobar L, Leon I. Total assignment of 13C and 1H spectra of three isomeric triterpenol derivatives by 2D NMR: an investigation of the potential utility of 1H chemical shifts in structural investigations of complex natural products. Tetrahedron. 1986; 42 3419-3428
- 15 Mahato B S, Kundo A P. 13C NMR spectra of pentacyclic triterpenoids – a compilation and some salient features. Phytochemistry. 1994; 37 1517-1575
- 16 Zimmermann J. Triterpenediols. VII. Triterpenes and pigments in flowers and fruits. Helv Chim Acta. 1944; 27 332-334
- 17 St. Pyrek J. Terpenes of compositae plants. Part XI. Structures of heliantriols Bo, B1, B2 and A1, new pentacyclic triterpenes from Helianthus annuus L. and Calendula officinalis L. Pol J Chem. 1979; 53 2465-2490
- 18 Kasprzyk Z, Pyrek J, Jolad S D, Steelink C. Identity of calenduladiol and thurberin: a lupenediol found in marigold flowers and organ pipe cactus. Phytochemistry. 1970; 9 2065-2066
- 19 Dutta C P, Ray L P K, Roy D N. Taraxasterol and its derivatives from Cirsium arvense. Phytochemistry. 1972; 11 2267-2269
- 20 Yasukawa K, Akihisa T, Oinuma H, Kasahara Y, Kimura Y, Yamanouchi S, Kumaki K, Tamura T, Takido M. Inhibitory effect of di- and trihydroxy triterpenes from the flowers of compositae on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Biol Pharm Bull. 1996; 19 1329-1331
- 21 Geetha T, Varalakshmi P. Antiinflammatory activity of lupeol and lupeol linoleate in rats. J Ethnopharmacol. 2001; 76 77-80
- 22 Holanda Pinto S A, Pinto L M, Cunha G M, Chaves M H, Santos F A, Rao V S. Anti-inflammatory effect of alpha, beta-amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology. 2008; 16 48-52
- 23 Rajic A, Akihisa T, Ukiya M, Yasukawa K, Sandeman R M, Chandler D S, Polya G M. Inhibition of trypsin and chymotripsin by anti-inflammatory triterpenoids from compositae flowers. Planta Med. 2001; 67 599-604
- 24 Ukiya M, Akihisa T, Tokuda H, Suzuki H, Mukainaka T, Ichiishi E, Yasukawa K, Kasahara Y, Nishino H. Constituents of compositae plants III. Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible chrysanthemum flowers. Cancer Lett. 2002; 177 7-12
- 25 Yasukawa K, Akihisa T, Oinuma H, Kaminaga T, Kanno H, Kasahara Y, Tamura T, Kamaki K, Yamanouchi S. Inhibitory effect of taraxastane-type triterpenes on tumor promotion by 12-O-tetradecanoylphorbol-13- acetate in two-stage carcinogenesis in mouse skin. Oncology. 1996; 53 341-344
- 26 Ovesná Z, Vachálková A, Horváthová K. Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma. 2004; 51 407-414
- 27 Chung Y K, Heo H J, Kim H K, Huh T L, Lim Y, Kim S K, Shin D H. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol Cells. 2001; 11 137-143
- 28 Lee J H, Lee K T, Yang J H, Baek N I, Kim D K. Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel. Arch Pharm Res. 2004; 27 53-67
- 29 Kosmulalage K S, Zahid S, Udenigwe C C, Akhtar S, Ata A, Samarasekera R. Glutathione S-transferase, acetylcholinesterase inhibitory and antibacterial activities of chemical constituents of Barleria prionitis. Z Naturforsch B. 2007; 62b 580-586
- 30 Fieser M. Fieser and Fieser's reagents for organic synthesis, Vol. 1. New York; Wiley Interscience 1967: 1-1457
Prof. Dr. Ana P. Murray
INQUISUR – Departamento de Química
Universidad Nacional del Sur
Av. Alem 1253
B8000CPB Bahía Blanca
Argentina
Phone: + 54 29 14 59 51 01 ext. 35 38
Fax: + 54 29 14 59 51 87
Email: apmurray@uns.edu.ar
- www.thieme-connect.de/ejournals/toc/plantamedica