Thorac Cardiovasc Surg 2010; 58(1): 1-7
DOI: 10.1055/s-0029-1240553
Review

© Georg Thieme Verlag KG Stuttgart · New York

Impact of Lymphatic Vessels on the Heart

Y. Cui1
  • 1Case Cardiovascular Research Institute and Harrington-McLaughlin Heart & Vascular Institute, Case Western Reserve University, Cleveland, OH, USA
Further Information

Publication History

received June 21, 2009

Publication Date:
13 January 2010 (online)

Abstract

This review updates the knowledge in the research field of cardiac lymphatic vessels by collecting both scientific evidence and hypotheses, including cardiac lymphatic vessel anatomy and lymph flow, the mechanism of cardiac lymphatic pumping, pathological findings and mechanisms of cardiac injury caused by lymph flow impairment, cardiac functional improvement by increasing lymph flow in the heart in patients with myocardial infarction, and the mechanisms of lymphangiogenesis.

References

  • 1 Rudbeck O. Nova exervitatio anatomia exhibens ductus hepatico aquosos et vasa glandularum serosa, nunc primum inventa, aeneisque figures delineate. Uppsala; Arosiae 1653
  • 2 Allison P R, Sabiston Jr D R. Experimental studies on the cardiac lymphatics.  Surg Forum. 1957;  8 271-274
  • 3 Cui Y, Urschel J D, Petrelli N J. The effect of cardiopulmonary lymphatic obstruction on heart and lung function.  Thorac Cardiovasc Surg. 2001;  45 35-40
  • 4 Ludwig L L, Schertel E R, Pratt J W et al. Impairment of left ventricular function by acute cardiac lymphatic obstruction.  Cardiovasc Res. 1997;  33 164-171
  • 5 Cui Y. Confocal imaging: blood and lymphatic capillaries.  The Scientific World Journal. 2006;  6 12-15
  • 6 Patek P R. The morphology of the lymphatics of the mammalian heart.  Am J Anat. 1939;  64 203-234
  • 7 Eberth C J, Belajeff A. Über die Lymphgefäße des Herzens.  Virchow's Arch. 1866;  37 124-131
  • 8 Miller A J, Pick R, Katz L N. Lymphatics of the mitral valve of the dog: demonstration and discussion of possible significance.  Circ Res. 1961;  9 1005-1009
  • 9 Miller A J, Pick R, Katz L N. The importance of the lymphatics of the mammalian heart: experimental observations and some speculations.  Circulation. 1964;  29 485-487
  • 10 Riquet M, Barthes F L P, Souilamas R, Hidden G. Thoracic duct tributaries from intrathoracic organs.  Ann Thorac Surg. 2002;  73 892-899
  • 11 Saito H, Sato T, Miyazaki M. Extramural lymphatic drainage from the thoracic esophagus based on minute cadaveric dissections: fundamentals for the sentinel node navigation surgery for the thoracic esophageal cancers.  Surg Radiol Anat. 2007;  29 531-542
  • 12 Zawieja D C, Davis K L, Schuster R, Hinds W M, Granger H J. Distribution, propagation, and coordination of contractile activity in lymphatics.  Am J Physiol. 1993;  264 H1283-H1291
  • 13 Mislin H. Experimental detection of autochthonous automatism of lymph vessels.  Experientia. 1961;  17 29-30
  • 14 Mislin H, Rathenow D. Experimentelle Untersuchungen über die Bewegungskoordination der Lymphangione.  Rev Suisse Zool. 1962;  69 334-344
  • 15 Ferguson M K, Williams U. Measurement of flow characteristics during individual contractions in bovine mesenteric lymphatic vessels.  Lymphology. 2000;  33 36-42
  • 16 Drinker C K, Warren M F, Maurer F W, McCarell J D. The flow, pressure and composition of cardiac lymph.  Am J Physiol. 1940;  130 43-55
  • 17 Kampmeier O F. On the lymph flow of the human heart, with reference to the development of the channels and the first appearance, distribution, and physiology of their valves.  Am Heart J. 1928;  4 210-222
  • 18 Cui Y. The role of lymphatic vessels in the heart.  Pathophysiology. , in press
  • 19 Anyukhovsky E P, Sosunov E A, Rosen M R. Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium in vitro and in vivo correlations.  Circulation. 1996;  94 1981-1988
  • 20 Opthof T, Coronel R, Janse M J. Is there a significant transmural gradient in repolarization time in the intact heart? Repolarization gradients in the intact heart.  Circ Arrhythmia Electrophysiol. 2009;  2 89-96
  • 21 Antzelevitch C. Cellular basis for the repolarization waves of the ECG.  Ann NY Acad Sci. 2006;  1080 268-281
  • 22 Maurer F W. The effects of decreased blood oxygen and increased blood carbon dioxide on the flow and composition of cervical and cardiac lymph.  Am J Physiol. 1940;  131 331-348
  • 23 Laine G A, Granger H J. Microvascular, interstitial, and lymphatic interactions in normal heart.  Am J Physiol. 1985;  249 H834-H842
  • 24 Uhley H N, Leeds S E, Sung M A, Patel S, Lobos E. The subendocardial lymphatics of the canine heart: a possible role of the lymphatics in the genesis of conduction disturbances and arrhythmias.  Am J Cardiol. 1972;  29 367-371
  • 25 Stoll C, Alembik Y, Dott B, Kieffer P. Lymphedema combined with brachydactyly and tachycardia.  Genet Couns. 1998;  9 33-37
  • 26 Cui Y, Zhou D, Peng W, Liu T, Chen H. Determinants of perioperative morbidity and mortality after pneumonectomy.  Thorac Cardiovasc Surg. 2004;  52 45-48
  • 27 Gitlitz G F, Hurwitt E S. Circulatory problems in the immediate postoperative period.  Surg Clin North Am. 1964;  44 505-535
  • 28 Miller A J, DeBoer A, Palmer A. The role of the lymphatic system in coronary atherosclerosis.  Med Hypotheses. 1992;  37 31-36
  • 29 Sun S, Lie J. Cardiac lymphatic obstruction.  Mayo Clin Proc. 1977;  52 785-792
  • 30 Miller A J, Pick R, Katz L N. Ventricular endomyocardial pathology produced by chronic cardiac lymphatic obstruction in the dog.  Circ Res. 1960;  8 941-947
  • 31 Symbas P N, Cooper T, Gantner Jr G E, Willman V L. Lymphatics of the heart: anatomic effects following interruption of the drainage of the cardiac lymph.  Arch Path. 1966;  81 573-575
  • 32 Symbas P N, Schlant R C, Gravanis M B, Shepherd R L. Pathologic and functional effects on the heart following interruption of the cardiac lymph drainage.  J Thorac Cardiovasc Surg. 1969;  57 577-584
  • 33 Ullal S R, Kluge T H, Gerbode F. Functional and pathologic changes in the heart following chronic cardiac lymphatic obstruction.  Surgery. 1972;  71 328-334
  • 34 Geissler H J, Dashkevich A, Fischer U M et al. First year changes of myocardial lymphatic endothelial markers in heart transplant recipients.  Eu J Thorac Cardiovasc Surg. 2006;  29 767-771
  • 35 Rusznyak I, Foldi M, Szabo G. Lymphatics and lymph circulation. New York; Pergamon Press 1960
  • 36 Gloviczki P, Solti F, Szlavy L, Jellinek H. Ultrastructural and electrophysiologic changes of experimental acute lymphostasis.  Lymphology. 1983;  16 185-192
  • 37 Rubboli A, Sobotka P A, Euler D E. Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart.  Am J Physiol. 1994;  267 H1054-H1061
  • 38 Pick R, Miller A J, Glick G. Myocardial pathology after cardiac venous and lymph flow obstruction in the dog.  Am Heart J. 1974;  87 627-632
  • 39 Solti F, Iskum M, Nagy J et al. The effect of mechanical lymph flow insufficiency on cardiac muscle necrosis as a result of coronary ligation.  Cor Vasa. 1968;  10 68-72
  • 40 Foldi M, Braun P, Papp M, Horvath I. Changes in serum transaminase activity following myocardial damage due to lymphatic congestion.  Nature. 1959;  183 1333-1334
  • 41 Solti F, Lengyel E, Jellinek H, Schneider F, Juhasz-Nagy A, Kekesi V. Coronary arteriopathy after lymphatic blockade: an experimental study in dogs.  Lymphology. 1994;  27 173-180
  • 42 Cui Y. Pulmonary hemodynamic effects resulting from mediastinal lymphatic obstruction in anesthetized rabbits.  Med Sci Res. 1999;  27 345-348
  • 43 Schraufnagel D E. Forms of lung lymphatics: a scanning electron microscopic study of casts.  Anat Rec. 1992;  233 547-554
  • 44 Deitch E A. Role of the gut lymphatic system in multiple organ failure.  Curr Opin Crit Care. 2001;  7 92-98
  • 45 Szlavy L, Koster K, de Courten A, Hollenberg N K. Early disappearance of lymphatics draining ischemic myocardium in the dog.  Angiology. 1987;  38 73-84
  • 46 Szlavy L, Adams D F, Hollenberg N K, Abrams H L. Cardiac lymph and lymphatics in normal and infarcted myocardium.  Am Heart J. 1980;  100 323-331
  • 47 Taira A, Uehara K, Fukuda S, Takenaka K, Koga M. Active drainage of cardiac lymph in relation to reduction in size of myocardial infarction: an experimental study.  Angiology. 1990;  41 1029-1036
  • 48 Yotsmoto G, Moriyama Y, Yamaoka A, Taira A. Experiment study of cardiac lymph dynamics and edema formation in ischemia/reperfusion injury: with reference to the effect of hyaluronidase.  Angiology. 1998;  49 299-305
  • 49 Dashkevich A, Bloch W, Antonyan A, Fries J U, Geissler H J. Morphological and quantitative changes of the initial myocardial lymphatics in terminal heart failure.  Lymphat Res Biol. 2009;  7 21-27
  • 50 Swartz M A, Skobe M. Lymphatic function, lymphangiogenesis, and cancer metastasis.  Micros Res Tech. 2001;  55 92-99
  • 51 Rutkowski J M, Boardman K C, Swartz M A. Characterization of lymphangiogenesis in a model of adult skin regeneration.  Am J Physiol Heart Circ Physiol. 2006;  291 H1402-H1410
  • 52 Adams R H, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis.  Nat Rev Mol Biol. 2007;  8 464-478
  • 53 Oliver G, Alitalo K. The lymphatic vasculature: recent progress and paradigms.  Annu Rev Cell Dev Biol. 2005;  21 457-483
  • 54 Karpanen T, Egeblad M, Karkkainen M J et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth.  Cancer Res. 2001;  61 1786-1790
  • 55 Hong Y K, Lange-Asschenfedt B, Velasco P et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins.  FASEB J. 2004;  18 1111-1113
  • 56 Dixelius J, Makinen T, Wirzenius M et al. Ligand-induced vascular endothelial growth factor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites.  J Biol Chem. 2003;  278 40973-40979
  • 57 Goldman J, Rutkowski J M, Shields J D et al. Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis.  FASEB J. 2007;  21 1003-1012
  • 58 Tammela T, Saaristo A, Lohela M et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia.  Blood. 2005;  105 4642-4648
  • 59 Yuan L, Moyon D, Pardanaud L et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice.  Development. 2002;  129 4797-4806

Dr. MD Yingjie Cui

Case Cardiovascular Research Institute and Harrington-McLaughlin Heart & Vascular Institute
Case Western Reserve University

2103 Cornell road

WRB 4–537

Cleveland, OH 44106

United States

Phone: + 001 21 63 68 47 56

Fax: + 001 21 63 68 05 56

Email: ycui3103@hotmail.com