Klin Padiatr 2010; 222(1): 3-12
DOI: 10.1055/s-0029-1239526
Übersichtsartikel

© Georg Thieme Verlag KG Stuttgart · New York

Kardiovaskuläre Magnetresonanztomografie im Kindesalter – klinische Indikationen und Beispiele

Cardiovascular Magnetic Resonance Imaging in Childhood – Clinical Indications and Case StudiesI. Voges1 , M. Jerosch-Herold2 , T. Plagemann1 , C. Hart1 , T. Hansen1 , M. Helle1 , H.-H. Kramer1 , C. Rickers1
  • 1Klinik für Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
  • 2Harvard Medical School, Brigham & Women's Hospital, Department of Radiology, Boston, USA
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Januar 2010 (online)

Zusammenfassung

Die kardiovaskuläre Magnetresonanztomografie (CMR) erhält zunehmend Einzug in die Routinediagnostik von angeborenen und erworbenen Herzerkrankungen bei Kindern und Jugendlichen. Dabei ergänzt sie die Echokardiografie und stellt bei einigen Indikationen ein alternatives Verfahren zur diagnostischen Herzkatheteruntersuchung dar. Im Gegensatz zur Echokardiografie wird die CMR nicht durch Schallbedingungen limitiert und bietet gegenüber Herzkatheteruntersuchungen zusätzlich den Vorteil einer fehlenden Belastung mit ionisierenden Strahlen. Mit der CMR können Gefäße und Organe des Thorax in jeder gewünschten Orientierung dargestellt und dreidimensionale Bilddatensätze akquiriert werden. Neben der Darstellung der kardiovaskulären Anatomie können auch Untersuchungen der globalen Herzfunktion, Blutflussmessungen, Gewebecharakterisierungen und in jüngerer Zeit auch Untersuchungen der myokardialen Perfusion und Vitalität vorgenommen werden. Diese Möglichkeiten machen die CMR insbesondere bei der Beurteilung von pädiatrischen Patienten mit angeborenen Herzfehlern zu einem wichtigen bildgebenden Verfahren. Der folgende Artikel gibt einen Überblick über die klinischen Indikationen anhand von Beispielen.

Abstract

In today's clinical practice cardiovascular magnetic resonance (CMR) imaging is increasingly used for assessment of congenital and acquired heart disease in children. CMR complements echocardiography and provides a noninvasive alternative to diagnostic cardiac catheterization. In contrast to echocardiography, CMR is not limited by acoustic windows, and unlike cardiac catheterization, CMR lacks ionizing radiation. Contiguous three and four dimensional data sets allow to display cardiac and thoracic vessel anatomy in any desired imaging plane. These characteristics provide unique images for the complete depiction of the pathological anatomy in particular in congenital heart disease. Furthermore CMR is also used for assessment of cardiac function, blood-flow measurements, tissue characterization, and, more recently, for evaluation of myocardial perfusion and viability. The following article reviews CMR indications in pediatric cardiology by means of clinical examples.

Literatur

  • 1 Abolmaali ND. et al . Reference values of MRI flow measurements of the pulmonary outflow tract in healthy children.  Rofo. 2004;  176 837-845
  • 2 Amis  Jr  ES. et al . American College of Radiology white paper on radiation dose in medicine.  J Am Coll Radiol. 2007;  4 272-284
  • 3 Alfakih K. et al . Assessment of ventricular function and mass by cardiac magnetic resonance imaging.  Eur Radiol. 2004;  14 1813-1822
  • 4 Arnold R. et al . Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization.  Pediatr Radiol. 2007;  37 998-1006
  • 5 Assomull RG. et al . Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy.  J Am Coll Cardiol. 2006;  48 1977-1985
  • 6 Baudendistel KT, Heverhagen JT, Knopp MV. Klinische MRT bei 3 Tesla: Aktueller Stand.  Der Radiologe. 2004;  44 11-18
  • 7 Beerbaum P. et al . Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry.  Circulation. 2001;  103 2476-2482
  • 8 Bouzas B, Kilner PJ, Gatzoulis MA. Pulmonary regurgitation: not a benign lesion.  Eur Heart J. 2005;  26 433-439
  • 9 Bruder O, Erbel R, Kreitner KF. Kardiomyopathien und Myokarditis. In: Thelen M, Erbel R, Kreitner KF, Barkhausen J, Hrsg. Bildgebende Kardiodiagnostik mit MRT, CT, Echokardiografie und anderen Verfahren. Thieme, Stuttgart 2007: S231-233
  • 10 Cantinotti M. et al . Diagnostic role of magnetic resonance imaging in identifying aortic arch anomalies.  Congenit Heart Dis. 2008;  3 117-123
  • 11 Didier D. et al . Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery.  Int J Cardiovasc Imaging. 2006;  22 457-475
  • 12 Fratz S. et al . More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation.  Circulation. 2002;  106 1510-1513
  • 13 Godart F. et al . Coarctation of the aorta: comparison of aortic dimensions between conventional MR imaging, 3D MR angiography, and conventional angiography.  Eur Radiol. 2002;  12 2034-2039
  • 14 Greil GF. et al . Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease.  Pediatr Radiol. 2007;  37 666-673
  • 15 Gross CM. et al . Percutaneous transluminal septal artery ablation using polyvinyl alcohol foam particles for septal hypertrophy in patients with hypertrophic obstructive cardiomyopathy: acute and 3-year outcomes.  J Endovasc Ther. 2004;  11 705-711
  • 16 Grosse-Wortmann L. et al . Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging.  J Thorac Cardiovasc Surg. 2008;  136 1429-1436
  • 17 Gutberlet M. et al . Arterial Switch Procedure for D-Transposition of the Great Arteries: Quantitative Midterm Evaluation of Hemodynamic Changes with Cine MR Imaging and Phase-Shift Velocity Mapping-Initial Experience.  Radiology. 2000;  214 467-475
  • 18 Helbing WA, de Roos A. Clinical application of cardiac magnetic resonance imaging after repair of tetralogy of Fallot.  Pediatr Cardiol. 2000;  21 70-79
  • 19 Krueger JJ. et al . Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study.  Circulation. 2006;  113 1093-1100
  • 20 Ley S. et al . Evaluation of aortic regurgitation in congenital heart disease: value of MR imaging in comparison to echocardiography.  Pediatr Radiol. 2007;  37 426-436
  • 21 Lim DS. et al . Cardiovascular magnetic resonance of pulmonary artery growth and ventricular function after Norwood procedure with Sano modification.  J Cardiovasc Magn Reson. 2008;  10 34
  • 22 Mavrogeni. et al . Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease.  J Am Coll Cardiol. 2004;  43 649-652
  • 23 McCrohon JA. et al . Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance.  Circulation. 2003;  108 54-59
  • 24 McKenna WJ. et al . Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology.  Br Heart J. 1994;  71 215-218
  • 25 Ming Z. et al . Diagnosis of congenital obstructive aortic arch anomalies in Chinese children by contrast-enhanced magnetic resonance angiography.  J Cardiovasc Magn Reson. 2006;  8 747-753
  • 26 Moon JC. et al . Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance.  J Am Coll Cardiol. 2003;  41 1561-1567
  • 27 Muthurangu V. et al . Cardiac magnetic resonance imaging after stage I Norwood operation for hypoplastic left heart syndrome.  Circulation. 2005;  112 3256-3263
  • 28 Nagel E. et al . Klinische Indikationen für die kardiovaskuläre Magnetresonanztomografie (CMR).  Clin Res Cardiol Suppl. 2007;  2 2 77-96
  • 29 Newburger JW. et al . Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association.  Circulation. 2004;  110 2747-2771
  • 30 Pennell DJ. et al . Society for Cardiovascular Magnetic Resonance; Working Group on Cardiovascular Magnetic Resonance of the European Society of Cardiology. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report.  Eur Heart J. 2004;  25 1940-1965
  • 31 Peters SA. et al . Muscular magnetic resonance imaging for evaluation of myopathies in children.  Klin Padiatr. 2008;  220 37-46
  • 32 Prasad SK. et al . Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage.  Circulation. 2004;  109 207-214
  • 33 Raith W. et al . How does the time of diagnosis affect the course of disease in children with Kawasaki syndrome? A retrospective analysis at one center.  Klin Padiatr. 2009;  221 83-88
  • 34 Richardson P. et al . Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies.  Circulation. 1996;  93 841-842
  • 35 Rickers C. et al . Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy.  Circulation. 2005;  112 855-861
  • 36 Roest AA. et al .Aortic coarctation. In: Manning WJ, Pennel DJ, Hrsg. Cardiovascular Magnetic Resonance. Churchill Livingstone, Philadelphia 2002: S295-297
  • 37 Schmitt F. et al . 3 Tesla-MRT: Der Erfolg höherer Feldstärken.  Der Radiologe. 2004;  44 31-48
  • 38 Shehata ML. et al . Role of cardiac magnetic resonance imaging in assessment of nonischemic cardiomyopathies.  Top Magn Reson Imaging. 2008;  19 43-57
  • 39 Smit JW. et al . Six months of recombinant human GH therapy in patients with ischemic cardiac failure does not influence left ventricular function and mass.  J Clin Endocrinol Metab. 2001;  86 4638-4643
  • 40 Strohm O. et al . Measurement of left ventricular dimensions and function in patients with dilated cardiomyopathy.  J Magn Reson Imaging. 2001;  13 367-371
  • 41 Suzuki A. et al . Remodeling of coronary artery lesions due to Kawasaki disease: Comparison of arteriographic and immunohistochemical findings.  Jpn Heart J. 2000;  41 245-256
  • 42 Valsangiacomo Buechel E. et al . Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance.  J Cardiovasc Magn Reson. 2009;  11 19
  • 43 von Kodolitsch Y. et al . Diagnosis and management of Marfan syndrome.  Future Cardiology. 2008;  4 85-96
  • 44 Wald RM. et al . Refining the assessment of pulmonary regurgitation in adults after tetralogy of Fallot repair: should we be measuring regurgitant fraction or regurgitant volume?.  Eur Heart J. 2009;  30 356-361

Korrespondenzadresse

PD Dr. Carsten Rickers

Universitätsklinikum Schleswig-Holstein, Campus Kiel, Klinik für Kinderkardiologie

Arnold-Heller-Straße 3

24105 Kiel

Telefon: +49/431/597/17 28

Fax: +49/431/597/18 28

eMail: voges@pedcard.uni-kiel.de