Handchir Mikrochir Plast Chir 2009; 41(6): 333-340
DOI: 10.1055/s-0029-1238297
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Effiziente Herstellung transfizierter humaner Keratinozyten unter serum- und Feederlayer-freien Bedingungen

Efficient Production of Transfected Human Keratinocytes under Serum-Free and Feeder Layer-Free ConditionsC. Radtke1 , K. Reimers1 , C. Allmeling1 , P. M. Vogt1
  • 1Medizinische Hochschule Hannover, Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Zentrum für Schwerbrandverletzte, Hannover
Further Information

Publication History

eingereicht 8.7.2009

akzeptiert 6.8.2009

Publication Date:
26 October 2009 (online)

Zusammenfassung

Fragestellung/Ziel: In der klinischen Anwendung kann eine autologe Transplantation von Keratinozyten besonders zur Behandlung von Brandwunden oder chronischen Wunden einen potenziellen Benefit für den Patienten darstellen. Die gut zu kontrollierende Applizierbarkeit der Keratinozyten und die Möglichkeit über topischen Zusatz von Induktoren auf die Genexpression direkt einzuwirken, machen Keratinozytenkulturen zu einem interessanten Vehikel für gentherapeutische Ansätze weit über eine Einwirkung auf Wundheilung hinaus. So ist eine Etablierung praktikabler und reproduzierbarer Verfahren zur Erhaltung reiner und proliferativer Kulturen eine unmittelbare Vorrausetzung um diese Therapievorteile zu nutzen. Die besten Ergebnisse mit nachfolgend reinen Keratinozyten bei fortschreitender Seneszenz wurden bislang mit sogenannten Feederlayers aus mitotisch inaktivierten Fibroblasten erzielt. Das Ziel dieser Studie war die Etablierung einer effektiven und verlässlichen Methode zur Isolation von humanen Keratinozyten. Wir stellen hier ein Verfahren vor, bei dem humane Keratinozyten ohne die Notwendigkeit eines Feederlayers in hoher Reinheit und Proliferatonsrate kultiviert werden können.

Material und Methode: Humane Keratinozyten wurden auf unbeschichtetem Plastikmaterial zunächst in modifiziertem Waymouthmedium gezogen, gefolgt von einem kommerziellen serumfreien Medium, mit den Ziel die Kontamination mit Fibroblasten zu unterdrücken. Die Zellen wurden morphologisch und mit anschließender Transfektion funktionell charakterisiert. Zur positiven Selektion der transfizierten Zellen wurde das Co-Transfektionssystem pMACS Kk und magnetic cell sorting angewendet.

Ergebnisse: Die Transfizierbarkeit, der nach dem beschriebenen Verfahren gezogenen Zellen, wurde anhand eines GFP exprimierenden Vektors ermittelt. Die erzielten Transfektionsraten lagen bei 35%. Der Einsatz des magnetic cell sorting erlaubte eine erfolgreiche positive Selektion. Nach dem sorting Verfahren erreichten de Zellen eine gute Adhärenz und setzten ihre Teilung fort. Für alle Keratinozytenkulturen konnte so eine permanente Adhärenz auf unbeschichteten Zellkulturmaterialien über 5 Passagen erreicht werden, ohne dass Anzeichen von Seneszenz beobachtet wurden und die kontinuierliche Verdopplungszeiten lagen bei 3–5 Tagen.

Schlussfolgerung: Wir beschreiben eine effiziente und simple Methode zur standardisierten Isolation von vitalen und proliferativen humanen Keratinozyten. Das hier etablierte vereinfachte Verfahren erleichtert den gentherapeutischen Einsatz und den Transfer Keratinozyten-basierter Zelltherapien in klinische Anwendungen.

Abstract

Purpose/Background: Keratinocyte transplantation after burn injury and in chronic wound treatment is a potentially useful method in clinical practice. As transfer of keratinocytes is easily monitored and gene expression is controllable by topical administration of inductors, keratinocyte cultures are an especially interesting medium for gene therapeutic approaches far above of wound healing applications. A major obstacle is the standardization of keratinocyte preparation and maintenance of pure proliferative cultures for clinical application. The best outcomes in previous protocols were obtained using fibroblasts as a feeder layer, a requirement for long-term expanded cultures. Cell expansion and a high purity of keratinocytes are prerequisites for clinical transfer studies. Here, we describe a human keratinocytes preparation method that allows cell proliferation and expansion in culture without a feeder layer.

Materials and Methods: Human keratinocytes were prepared from skin biopsies and cultured on untreated plastic culture dishes using Waymouth medium the first days followed by a change to a commercially available serum-free keratinocyte medium. The cells were characterized morphologically followed by transfection. For positive selection, transfected cells were selected by the cotransfection system pMACS Kk and magnetic cell sorting.

Results: Transfection rates were determined by expression of GFP vector which were 35%. The usage of magnetic cell sorting resulted in positive selection of transfected cells. Positive cells were able to adhere and proliferate after the sorting procedure. High viability and expansion of plastic adherent keratinocytes was achieved allowing up to 5 passages without signs of senescence and the doubling times were 3–5 days. The cells displayed typical keratinocyte morphology and immunostaining confirmed high keratinocyte purity. The number of contaminating fibroblasts was low.

Conclusion: Here, we describe an efficient and inexpensive method for a standardized human keratinocyte isolation without the need of a fibroblast feeder layer. This protocol may facilitate the clinical application of cell based therapies in burn injuries or chronic wounds using keratinocytes.

Literatur

  • 1 Amtsblatt der Europäischen Union . http://eurlex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexplus!prod!docnumber&lg=de&type_doc=regulation&an_doc=2007&nu_doc=1394
  • 2 Andree C, Voigt M, Wenger A. et al . Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system.  Tissue Eng. 2001;  7 757-766
  • 3 Arnold AS, Laporte V, Dumont S. et al . Comparing reagents for efficient transfection of human primary myoblasts: FuGENE 6, Effectene and ExGen 500.  Fundam Clin Pharmacol. 2006;  20 81-89
  • 4 Bannasch H, Stark GB, Knam F. et al . Decellularized dermis in combination with cultivated keratinocytes in a short- and long-term animal experimental investigation.  J Eur Acad Dermatol Venereol. 2008;  22 41-49
  • 5 Bannasch H, Unterberg T, Fohn M. et al . Cultured keratinocytes in fibrin with decellularised dermis close porcine full-thickness wounds in a single step.  Burns. 2008;  34 1015-1021
  • 6 Borg DJ, Dawson RA, Leavesley DI. Functional phenotypic characterization of human keratinocytes expanded in microcarrier culture.  J Biomed Mater Res. A 2009;  88 184-194
  • 7 Braun-Falco M, Doenecke A, Smola H. Efficient gene transfer into human keratinocytes with recombinant adeno-associated virus vectors.  Gene Ther. 1999;  6 432-441
  • 8 Bullock AJ, Higham MC, MacNeil S. et al . Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes.  Tissue Eng. 2006;  12 245-255
  • 9 Chen M, Li W, Fan J. et al . An efficient gene transduction system for studying gene function in primary human dermal fibroblasts and epidermal keratinocytes.  Clin Exp Dermatol. 2003;  28 193-199
  • 10 Coolen NA, Verkerk M, Reijnen L. et al . Culture of keratinocytes for transplantation without the need of feeder layer cells.  Cell Transplant. 2007;  16 649-661
  • 11 Doucet E, Bourbon J, Rieutort M. et al . Optimization of fetal lung organ culture for surfactant biosynthesis.  In Vitro Cell Dev Biol. 1987;  23 189-198
  • 12 Dunham WB, Waymouth C. Intradermal transplantation in mice of small numbers of sarcoma cells followed by tumor growth and regression.  Cancer Res. 1976;  36 189-193
  • 13 Elmadbouh I, Rossignol P, Meilhac O. et al . Optimization of in vitro vascular cell transfection with non-viral vectors for in vivo applications.  J Gene Med. 2004;  6 1112-1124
  • 14 Garlick JA, Katz AB, Fenjves ES. et al . Retrovirus-mediated transduction of cultured epidermal keratinocytes.  J Invest Dermatol. 1991;  97 824-829
  • 15 Hager B, Bickenbach JR, Fleckman P. Long-term culture of murine epidermal keratinocytes.  J Invest Dermatol. 1999;  112 971-976
  • 16 Hakkinen L, Koivisto L, Larjava H. An improved method for culture of epidermal keratinocytes from newborn mouse skin.  Methods Cell Sci. 2001;  23 189-196
  • 17 Higham MC, Dawson R, Szabo M. et al . Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use.  Tissue Eng. 2003;  9 919-930
  • 18 Horch RE, Bannasch H, Stark GB. Transplantation of cultured autologous keratinocytes in fibrin sealant biomatrix to resurface chronic wounds.  Transplant Proc. 2001;  33 642-644
  • 19 Horch RE, Debus M, Wagner G. et al . Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis.  Tissue Eng. 2000;  6 53-67
  • 20 Jensen UB, Petersen MS, Lund TB. et al . Transgene expression in human epidermal keratinocytes: cell cycle arrest of productively transfected cells.  Exp Dermatol. 2000;  9 298-310
  • 21 Kopp J, Jeschke MG, Bach AD. et al . Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix.  Cell Tissue Bank. 2004;  5 89-96
  • 22 Krueger GG, Morgan JR, Jorgensen CM. et al . Genetically modified skin to treat disease: potential and limitations.  J Invest Dermatol. 1994;  103 S76-S84
  • 23 Kube D, Vockerodt M. Transient gene expression and MACS enrichment.  Methods Mol Biol. 2001;  174 155-164
  • 24 McLane JA, Katz M, Abdelkader N. Effect of 1,25-dihydroxyvitamin D3 on human keratinocytes grown under different culture conditions.  In Vitro Cell Dev Biol. 1990;  26 379-387
  • 25 Meng X, Sawamura D, Ina S. et al . Keratinocyte gene therapy: cytokine gene expression in local keratinocytes and in circulation by introducing cytokine genes into skin.  Exp Dermatol. 2002;  11 456-461
  • 26 Papini S, Cecchetti D, Campani D. et al . Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture.  Stem Cells. 2003;  21 481-494
  • 27 Prenosil JE, Kino-Oka M. Computer controlled bioreactor for large-scale production of cultured skin grafts.  Ann N Y Acad Sci. 1999;  875 386-397
  • 28 Richards S, Leavesley D, Topping G. et al . Development of defined media for the serum-free expansion of primary keratinocytes and human embryonic stem cells.  Tissue Eng Part C Methods. 2008;  14 221-232
  • 29 Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis.  Cell. 1994;  76 1063-1073
  • 30 Skarda J, Bilek J, Urbanova E. Induction of lipid synthesis in mammary organ cultures from mature virgin and pregnant goats.  Physiol Bohemoslov. 1978;  27 53-59
  • 31 Stark GB, Horch RE, Voigt M. et al . Biological wound tissue glue systems in wound healing].  Langenbecks Arch Chir Suppl Kongressbd. 1998;  115 683-688
  • 32 Sun T, Higham M, Layton C. et al . Developments in xenobiotic-free culture of human keratinocytes for clinical use.  Wound Repair Regen. 2004;  12 626-634
  • 33 Tanczos E, Horch RE, Bannasch H. et al . [Keratinocyte transplantation and tissue engineering. New approaches in treatment of chronic wounds].  Zentralbl Chir. 1999;  124 ((Suppl 1)) 81-86
  • 34 Vogt PM, Thompson S, Andree C. et al . Genetically modified keratinocytes transplanted to wounds reconstitute the epidermis.  Proc Natl Acad Sci USA. 1994;  91 9307-9311
  • 35 Voigt M, Schauer M, Schaefer DJ. et al . Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds.  Tissue Eng. 1999;  5 563-572
  • 36 Waymouth C. Rapid proliferation of sublines of NCTC clone 929 (strain L) mouse cells in a simple chemically defined medium (MB 752/1).  J Natl Cancer Inst. 1959;  22 1003-1017
  • 37 Wei Q, Croy BA, Etches RJ. Selection of genetically modified chicken blastodermal cells by magnetic-activated cell sorting.  Poult Sci. 2001;  80 1671-1678
  • 38 Yano S, Okochi H. Long-term culture of adult murine epidermal keratinocytes.  Br J Dermatol. 2005;  153 1101-1104
  • 39 Young AT, Lakey JR, Murray AG. et al . Gene therapy: a lipofection approach for gene transfer into primary endothelial cells.  Cell Transplant. 2002;  11 573-582

Korrespondenzadresse

Dr. Kerstin Reimers

Medizinische Hochschule

Hannover Klinik für Plastische

Hand- und Wiederherstellungschirurgie

Podbielskistraße 380

30659 Hannover

Email: Reimers.Kerstin@MH-Hannover.de