Horm Metab Res 2010; 42(1): 56-60
DOI: 10.1055/s-0029-1234081
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Comparison of Vasopressin and Oxytocin Expressions in the Hypothalamo-Neurohypophysial System of Patients with Chronic Heart Failure

E. V. Sivukhina 1 , Iu. E. Morozov 2 , A. A. Dolzhikov 3 , G. F. Jirikowski 1 , V. Grinevich 4
  • 1Department of Anatomy II, Friedrich-Schiller University, Jena, Germany
  • 2Regional Medical Expert Bureau of Medical Legal Examination, Kaliningrad, Russia
  • 3Department of Pathology, Regional Hospital, Belgorod, Russia
  • 4Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
Further Information

Publication History

received 27.04.2009

accepted 13.07.2009

Publication Date:
11 August 2009 (online)

Abstract

The hypothalamic nonapeptide vasopressin is a known player in the pathogenesis of chronic heart failure. According to the large body of clinical evidence, vasopressin has an impact on salt and water imbalance, hyponatremia, and subsequent renal insufficiency – the most common and destructive co-morbidity of patients afflicted with chronic heart failure. Despite the well-documented elevated levels of vasopressin in the blood of such patients, its expression in the magnocellular hypothalamic nuclei and transport to the posterior pituitary has not yet been investigated. In addition, the literature almost lacks the information on the contribution of another member of nonapeptide family, oxytocin, in the pathogenesis of this disease. Here we present a postmortem analysis of vasopressin and oxytocin-immunoreactive neurons and their terminals in the posterior pituitary of 8 male patients (53.8±9.3 years) who had died from CHF and 9 male controls (54.6±11.8 years). In line with previous clinical reports, our study on hypothalami of chronic heart failure patients revealed a significant increase in the relative profile density (+29%) of vasopressin-positive neurons in the hypothalamic supraoptic nucleus. Consistently we found a significant increase in the relative optic density of vasopressin-immunoreactivity in the posterior pituitary (+33%) of these patients. In contrast, the similar analysis applied for oxytocin neurons revealed no statistically significant differences to controls. In conclusion, our study provides the morphological evidence for activation of vasopressin (but not oxytocin) expression and vasopressin transport to the posterior pituitary in patients with chronic heart failure.

References

  • 1 Kannel WB, Belanger AJ. Epidemiology of Heart Failure.  Am Heart J. 1991;  121 951-957
  • 2 McMurray, Pfeffer MA. Heart failure.  Lancet. 2005;  365 1877-1889
  • 3 Robertson GL. Physiology of ADH secretion.  Kidney Int. 1987;  21 ((Suppl)) S20-S26
  • 4 Dudaev VA, Gorin V, Borodkin VV, Diukov IV, Nechaeva NI. Vasopressin content of the blood in ischemic heart disease patients and its interrelation with other hormones.  Kardiologiia. 1986;  26 98-101
  • 5 Kjaer A, Hesse B. Heart failure and neuroendicrine activation: diagnostic, prognostic and therapeutic perspectives.  Clin Physiol. 2001;  21 661-672
  • 6 Nakamura T, Funayama H, Yoshimura A, Tsuruya Y, Saito M, Kawakami M, Ishikawa SE. Possible vascular role of increased plasma arginine vasopressin in congestive heart failure.  Int J Cardiol. 2006;  106 191-195
  • 7 LeJemtel TH, Serrano C. Vasopressin dysregulation: hyponatremia, fluid retention and congestive heart failure.  Int J Cardiol. 2007;  120 1-9
  • 8 Ventura RR, Gomes DA, Reis WL, Elias LL, Castro M, Valença MM, Carnio EC, Rettori V, McCann SM, Antunes-Rodrigues J. Nitrergic modulation of vasopressin, oxytocin and atrial natriuretic peptide secretion in response to sodium intake and hypertonic blood volume expansion.  Braz J Med Biol Res. 2002;  35 1101-1109
  • 9 Lauand F, Ruginsk SG, Rodrigues HL, Reis WL, de Castro M, Elias LL, Antunes-Rodrigues J. Glucocorticoid modulation of atrial natriuretic peptide, oxytocin, vasopressin and Fos expression in response to osmotic, angiotensinergic and cholinergic stimulation.  Neuroscience. 2007;  147 247-257
  • 10 Chou CL, DiGiovanni SR, Mejia R, Nielsen S, Knepper MA. Oxytocin as an antidiuretic hormone.  Am J Physiol. 1995;  269 ((1 Pt 2)) F70-F77 , , F78–F85
  • 11 Haanwinckel MA, Elias LK, Favaretto AL, Gutkowska J, McCann SM, Antunes-Rodrigues J. Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume expansion in the rat.  Proc Nat Acad Sci USA. 1995;  92 7902-7906
  • 12 Buijs RM, Swaab DF. Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system.  Cell Tissue Res. 1979;  204 355-365
  • 13 Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of hypothalamus that project to the medulla or to the spinal cord in the rat.  J Comp Neurol. 1982;  205 260-272
  • 14 Maier T, Dai WJ, Csikós T, Jirikowski GF, Unger T, Culman J. Oxytocin Pathways Mediate the Cardiovascular and Behavioral Responses to Substance P in the Rat Brain.  Hypertension. 1998;  31 480-486
  • 15 Wsoł A, Cudnoch-Jędrzejewska A, Szczepanska-Sadowska E, Kowalewski S, Dobruch J. Central oxytocin modulation of acute stress-induced cardiovascular responses after myocardial infarction in the rat.  Stress. 2009 Feb;  9 1 , [Epub ahead of print]
  • 16 Sivukhina EV, Poskrebysheva AS, Smurova IuV, Dolzhikov AA, Morozov IuE, Jirikowski GF, Grinevich V. Altered hypothalamic-pituitary-adrenal axis activity in patients with chronic heart failure.  Horm Metab Res. 2009;  41: , in press
  • 17 Sivukhina EV, Dolzhikov AA, Morozov IuE, Jirikowski GF, Grinevich V. Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic neurons in men.  Horm Metab Res. 2006;  38 382-390
  • 18 Swaab DF. Neurobiology and neuropathology of the human hypothalamus. In: Bloom FE, Bjorklund A, Hökfelt T, eds Handbook of Chemical Neuroanatomy Vol. 13. Amsterdam: Elsevier 1997: 39-138
  • 19 Goldsmith SR. Vasopressin receptor antagonists: mechanisms of action and potential effects in heart failure.  Cleve Clin J Med. 2006;  73 ((Suppl 2)) S20-S23
  • 20 Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin.  Am J Cardiol. 2005;  95 8B-13B
  • 21 Oh MS. Management of hyponatremia and clinical use of vasopressin antagonists.  Am J Med Sci. 2007;  333 101-105
  • 22 Sanghi P, Uretsky BF, Schwarz ER. Vasopressin antagonism: a future treatment option in heart failure.  Eur Heart J. 2005;  26 538-543
  • 23 Rai A, Whaley-Connell A, McFarlane S, Sowers JR. Hyponatremia, Arginine Vasopressin dysregulation, and Vasopressin receptor antagonism.  Am J Nephrol. 2006;  26 579-589
  • 24 Gheorghiade M, Konstam MA, Burnett Jr. JC, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials.  JAMA. 2007;  297 1332-1343
  • 25 Burrell LM, Risvanis J, Johnston CI, Naitoh M, Baldinq LC. Vasopressin receptor antagonism: a therapeutic option in heart failure and hypertension.  Exp Physiol. 2000;  85 ((Suppl)) 259S-265S
  • 26 Ramos AT, Troncone LR, Tufik S. Suppression of Adrenocorticotrophic Hormone Secretion by Simultaneous Antagonism of Vasopressin 1b and CRH-1 Receptors on Three Different Stress Models.  Neuroendocrinology. 2006;  84 309-316
  • 27 Holmes MC, Antoni FA, Aguilera G, Catt KJ. Magnocellular axons in passage through the median eminence release vasopressin.  Nature. 1986;  319 326-329
  • 28 Kasatkina LV, Pivovarov VN, Markova EV, Salem S, Rossel's AN. Blood hormones in chronic ischemic heart disease and acute myocardial infarct.  Kardiologiia. 1979;  19 93-98
  • 29 Jezova D, Skultetyova I, Tokarev DI, Bakos P, Vigas M. Vasopressin and oxytocin in stress.  Ann NY Acad Sci. 1995;  771 192-203
  • 30 Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophyseal system regulates the hypothalamic-pituitary adrenal axis under stress: an old concept revisited.  Front Neuroendocrinol. 2004;  25 132-149
  • 31 Laguna-Abreu MT, Koenigkam-Santos M, Colleta AM, Elias PC, Moreira AC, Antunes-Rodrigues J, Elias LL, Castro M. Time course of vasopressin and oxytocin secretion after stress in adrenalectomized rats.  Horm Metab Res. 2005;  37 84-88
  • 32 Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication.  Front Neuroendocrinol. 2004;  25 150-176

Correspondence

V. GrinevichMD, PhD 

Group Leader

Department of Molecular Neurobiology

Max-Planck-Institute for Medical Research

Jahnstrasse 29

69120 Heidelberg

Germany

Phone: +49 6221 486 174 (office)+49 6221 486 128 (lab)

Fax: 49 6221 486 110

Email: Valery.Grinevich@mpimf-heidelberg.mpg.de