J Reconstr Microsurg 2009; 25(8): 483-495
DOI: 10.1055/s-0029-1234027
© Thieme Medical Publishers

Effect of Acetyl-L-Carnitine on Axonal Sprouting Following Donor Nerve Injury Distal to an End-to-Side Neurorrhaphy Model

Zinon T. Kokkalis1 , Panayiotis N. Soucacos2 , Julia K. Terzis1
  • 1International Institute of Reconstructive Microsurgery, Eastern Virginia Medical School, Norfolk, Virginia
  • 2Department of Orthopaedic Surgery, University of Athens, School of Medicine, Athens, Greece
Further Information

Publication History

Publication Date:
20 August 2009 (online)

ABSTRACT

This study investigated the hypothesis that acetyl-L-carnitine (ALCAR) could have a significant effect on nerve regeneration after end-to-side neurorrhaphy. The ability of the ALCAR to enhance nerve regeneration in combination with various types of donor nerve injury distal to the coaptation site was also determined. Twenty-five Sprague-Dawley rats were randomized to five groups of five animals each, in which three different types of donor injury (crush, ligation, and transection injury) distal to the coaptation site were executed (groups C, D, and E, respectively). Animals in group A (placebo) and group B underwent a standard end-to-side neurorrhaphy. Animals from groups B to E received a daily intraperitoneal injection of 50 mg/kg/d of ALCAR, and a placebo was injected in place of ALCAR in animals in group A. Administration of acetyl-L-carnitine alone did not prove to be a significant stimulus for regeneration, as concluded after comparison among the two noninjury models of the donor nerve (groups A and B). Indeed, the combination of an injury model of the donor nerve (crush injury) with administration of acetyl-L-carnitine proved to be a significantly more potent stimulus for regeneration than the control (placebo) group, as measured by behavioral, muscle morphometric, electrophysiological, and histomorphometric studies.

REFERENCES

  • 1 Haninec P, Sámal F, Tomás R, Houstava L, Dubovwý P. Direct repair (nerve grafting), neurotization, and end-to-side neurorrhaphy in the treatment of brachial plexus injury.  J Neurosurg. 2007;  106 391-399
  • 2 Amr S M, Moharram A N. Repair of brachial plexus lesions by end-to-side side-to-side grafting neurorrhaphy: experience based on 11 cases.  Microsurgery. 2005;  25 126-146
  • 3 Yüksel F, Peker F, Celiköz B. Two applications of end-to-side nerve neurorrhaphy in severe upper-extremity nerve injuries.  Microsurgery. 2004;  24 363-368
  • 4 Giovanoli P, Koller R, Meuli-Simmen C et al.. Functional and morphometric evaluation of end-to-side neurorrhaphy for muscle reinnervation.  Plast Reconstr Surg. 2000;  106 383-392
  • 5 Noah E M, Williams A, Jorgenson C, Skoulis T G, Terzis J K. End-to-side neurorrhaphy: a histologic and morphometric study of axonal sprouting into an end-to-side nerve graft.  J Reconstr Microsurg. 1997;  13 99-106
  • 6 Noah E M, Williams A, Fortes W, Terzis J K. A new animal model to investigate axonal sprouting after end-to-side neurorrhaphy.  J Reconstr Microsurg. 1997;  13 317-325
  • 7 Okajima S, Terzis J K. Ultrastructure of early axonal regeneration in an end-to-side neurorrhaphy model.  J Reconstr Microsurg. 2000;  16 313-323 discussion 323-326
  • 8 Sanapanich K, Morrison W A, Messina A. Physiologic and morphologic aspects of nerve regeneration after end-to-end or end-to-side coaptation in a rat model of brachial plexus injury.  J Hand Surg [Am]. 2002;  27 133-142
  • 9 Adelson P D, Bonaroti E A, Thompson T P, Tran M, Nystrom N A. End-to-side neurorrhaphies in a rodent model of peripheral nerve injury: a preliminary report of a novel technique.  J Neurosurg. 2004;  101(1 suppl) 78-84
  • 10 Hayashi A, Yanai A, Komuro Y, Nishida M, Inoue M, Seki T. Collateral sprouting occurs following end-to-side neurorrhaphy.  Plast Reconstr Surg. 2004;  114 129-137
  • 11 Bontioti E, Kanje M, Lundborg G, Dahlin L B. End-to-side nerve repair in the upper extremity of rat.  J Peripher Nerv Syst. 2005;  10 58-68
  • 12 Kerns J M, Sladek E H, Malushte T S et al.. End-to-side nerve grafting of the tibial nerve to bridge a neuroma-in-continuity.  Microsurgery. 2005;  25 155-164 discussion 164-166
  • 13 Akeda K, Hirata H, Matsumoto M et al.. Regenerating axons emerge far proximal to the coaptation site in end-to-side nerve coaptation without a perineurial window using a T-shaped chamber.  Plast Reconstr Surg. 2006;  117 1194-1203 discussion 1204-1205
  • 14 Kovacic U, Tomsic M, Sketelj J, Bajrović F F. Collateral sprouting of sensory axons after end-to-side nerve coaptation—a longitudinal study in the rat.  Exp Neurol. 2007;  203 358-369
  • 15 Kanje M, Arai T, Lundborg G. Collateral sprouting from sensory and motor axons into an end to side attached nerve segment.  Neuroreport. 2000;  11 2455-2459
  • 16 Bertelli J A, Ghizoni M F. Concepts of nerve regeneration and repair applied to brachial plexus reconstruction.  Microsurgery. 2006;  26 230-244
  • 17 Bertelli J A, Ghizoni M F. Nerve repair by end-to-side coaptation or fascicular transfer: a clinical study.  J Reconstr Microsurg. 2003;  19 313-318
  • 18 Pondaag W, Gilbert A. Results of end-to-side nerve coaptation in severe obstetric brachial plexus lesions.  Neurosurgery. 2008;  62 656-663 discussion 656-663
  • 19 Amr S M, Moharram A N, Abdel-Meguid K M. Augmentation of partially regenerated nerves by end-to-side side-to-side grafting neurotization: experience based on eight late obstetric brachial plexus cases.  J Brachial Plex Peripher Nerve Inj. 2006;  1 6
  • 20 McCallister W V, Tang P, Trumble T E. Is end-to-side neurorrhaphy effective? A study of axonal sprouting stimulated from intact nerves.  J Reconstr Microsurg. 1999;  15 597-603 discussion 603-604
  • 21 Brenner M J, Dvali L, Hunter D A, Myckatyn T M, Mackinnon S E. Motor neuron regeneration through end-to-side repairs is a function of donor nerve axotomy.  Plast Reconstr Surg. 2007;  120 215-223
  • 22 Bontioti E, Dahlin L B, Kataoka K, Kanje M. End-to-side nerve repair induces nuclear translocation of activating transcription factor 3.  Scand J Plast Reconstr Surg Hand Surg. 2006;  40 321-328
  • 23 Pannucci C, Myckatyn T M, Mackinnon S E, Hayashi A. End-to-side nerve repair: review of the literature.  Restor Neurol Neurosci. 2007;  25 45-63
  • 24 Hayashi A, Pannucci C, Moradzadeh A et al.. Axotomy or compression is required for axonal sprouting following end-to-side neurorrhaphy.  Exp Neurol. 2008;  211 539-550
  • 25 Kokkalis Z T, Soucacos P N, Terzis J K. Effect of donor nerve injury distal to an end-to-side neurorrhaphy model.  J Reconstr Microsurg. 2009;  25 295-306
  • 26 Tiangco D A, Papakonstantinou K C, Mullinax K A, Terzis J K. IGF-I and end-to-side nerve repair: a dose-response study.  J Reconstr Microsurg. 2001;  17 247-256
  • 27 Caplan J, Tiangco D A, Terzis J K. Effects of IGF-II in a new end-to-side model.  J Reconstr Microsurg. 1999;  15 351-358
  • 28 Fortes W M, Noah E M, Liuzzi F J, Terzis J K. End-to-side neurorrhaphy: evaluation of axonal response and upregulation of IGF-I and IGF-II in a non-injury model.  J Reconstr Microsurg. 1999;  15 449-457
  • 29 Gurney M E, Yamamoto H, Kwon Y. Induction of motor neuron sprouting in vivo by ciliary neurotrophic factor and basic fibroblast growth factor.  J Neurosci. 1992;  12 3241-3247
  • 30 Ho P R, Coan G M, Cheng E T et al.. Repair with collagen tubules linked with brain-derived neurotrophic factor and ciliary neurotrophic factor in a rat sciatic nerve injury model.  Arch Otolaryngol Head Neck Surg. 1998;  124 761-766
  • 31 Fernandez E, Pallini R, Gangitano C et al.. Effects of L-carnitine, L-acetylcarnitine and gangliosides on the regeneration of the transected sciatic nerve in rats.  Neurol Res. 1989;  11 57-62
  • 32 Fernandez E, Pallini R, Gangitano C et al.. Studies on the degenerative and regenerative phenomena occurring after transection and repair of the sciatic nerve in rats: effects of acetyl-L-carnitine.  Int J Clin Pharmacol Res. 1990;  10 85-99
  • 33 McKay Hart A, Wiberg M, Terenghi G. Pharmacological enhancement of peripheral nerve regeneration in the rat by systemic acetyl-L-carnitine treatment.  Neurosci Lett. 2002;  334 181-185
  • 34 Montgomery S A, Thal L J, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease.  Int Clin Psychopharmacol. 2003;  18 61-71
  • 35 Thal L J, Carta A, Clarke W R et al.. A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer's disease.  Neurology. 1996;  47 705-711
  • 36 Sima A A, Calvani M, Mehra M, Amato A. Acetyl-L-Carnitine Study Group . Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials.  Diabetes Care. 2005;  28 89-94
  • 37 De Grandis D, Minardi C. Acetyl-L-carnitine (levacecarnine) in the treatment of diabetic neuropathy. A long-term, randomised, double-blind, placebo-controlled study.  Drugs R D. 2002;  3 223-231
  • 38 Osio M, Muscia F, Zampini L et al.. Acetyl-l-carnitine in the treatment of painful antiretroviral toxic neuropathy in human immunodeficiency virus patients: an open label study.  J Peripher Nerv Syst. 2006;  11 72-76
  • 39 Scarpini E, Sacilotto G, Baron P, Cusini M, Scarlato G. Effect of acetyl-L-carnitine in the treatment of painful peripheral neuropathies in HIV + patients.  J Peripher Nerv Syst. 1997;  2 250-252
  • 40 Grandis D D. Tolerability and efficacy of L-acetylcarnitine in patients with peripheral neuropathies: a short-term, open multicentre study.  Clin Drug Investig. 1998;  15 73-79
  • 41 Bennett G J, Xie Y K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.  Pain. 1988;  33 87-107
  • 42 Inciong J G, Marrocco W C, Terzis J K. Efficacy of intervention strategies in a brachial plexus global avulsion model in the rat.  Plast Reconstr Surg. 2000;  105 2059-2071
  • 43 Bertelli J A, Mira J C. Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat.  J Neurosci Methods. 1993;  46 203-208
  • 44 Snyder C C. Epineurial repair.  Orthop Clin North Am. 1981;  12 267-276
  • 45 Gravvanis A I, Tsoutsos D A, Tagaris G A et al.. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts: an experimental study.  Microsurgery. 2004;  24 408-415
  • 46 Gorio A, Carmignoto G, Finesso M, Polato P, Nunzi M G. Muscle reinnervation—II. Sprouting, synapse formation and repression.  Neuroscience. 1983;  8 403-416
  • 47 Kelly E J, Jacoby C, Terenghi G, Mennen U, Ljungberg C, Wiberg M. End-to-side nerve coaptation: a qualitative and quantitative assessment in the primate.  J Plast Reconstr Aesthet Surg. 2007;  60 1-12
  • 48 Terenghi G. Peripheral nerve regeneration and neurotrophic factors.  J Anat. 1999;  194(Pt 1) 1-14
  • 49 Wilson A D, Hart A, Brannstrom T, Wiberg M, Terenghi G. Primary sensory neuronal rescue with systemic acetyl-L-carnitine following peripheral axotomy. A dose-response analysis.  Br J Plast Surg. 2003;  56 732-739
  • 50 Manfridi A, Forloni G L, Arrigoni-Martelli E, Mancia M. Culture of dorsal root ganglion neurons from aged rats: effects of acetyl-L-carnitine and NGF.  Int J Dev Neurosci. 1992;  10 321-329
  • 51 Taglialatela G, Angelucci L, Ramacci M T, Werrbach-Perez K, Jackson G R, Perez-Polo J R. Acetyl-L-carnitine enhances the response of PC12 cells to nerve growth factor.  Brain Res Dev Brain Res. 1991;  59 221-230
  • 52 Virmani M A, Biselli R, Spadoni A et al.. Protective actions of L-carnitine and acetyl-L-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors.  Pharmacol Res. 1995;  32 383-389
  • 53 Hart A M, Wiberg M, Youle M, Terenghi G. Systemic acetyl-L-carnitine eliminates sensory neuronal loss after peripheral axotomy: a new clinical approach in the management of peripheral nerve trauma.  Exp Brain Res. 2002;  145 182-189
  • 54 Bremer J. The role of carnitine in intracellular metabolism.  J Clin Chem Clin Biochem. 1990;  28 297-301
  • 55 Singer P A, Mehler S. Fasting increases glucose and leucine uptake during regeneration of the hypoglossal nerve in the rat.  Neurosci Lett. 1983;  41 115-118
  • 56 Kotil K, Kirali M, Eras M, Bilge T, Uzun H. Neuroprotective effects of acetyl-L-carnithine in experimental chronic compression neuropathy. A prospective, randomized and placebo-control trials.  Turk Neurosurg. 2007;  17 67-77
  • 57 De Angelis C, Scarfò C, Falcinelli M et al.. Acetyl-L-carnitine prevents age-dependent structural alterations in rat peripheral nerves and promotes regeneration following sciatic nerve injury in young and senescent rats.  Exp Neurol. 1994;  128 103-114
  • 58 Angelucci L, Ramacci M T, Taglialatela G et al.. Nerve growth factor binding in aged rat central nervous system: effect of acetyl-L-carnitine.  J Neurosci Res. 1988;  20 491-496
  • 59 Pu L L, Syed S A, Reid M et al.. Effects of nerve growth factor on nerve regeneration through a vein graft across a gap.  Plast Reconstr Surg. 1999;  104 1379-1385
  • 60 Seniuk N A. Neurotrophic factors: role in peripheral neuron survival and axonal repair.  J Reconstr Microsurg. 1992;  8 399-404
  • 61 Mezzina C, De Grandis D, Calvani M, Marchionni A, Pomes A. Idiopathic facial paralysis: new therapeutic prospects with acetyl-L-carnitine.  Int J Clin Pharmacol Res. 1992;  12 299-304
  • 62 Gu Y D, Ma M K. Nerve transfer for treatment of root avulsion of the brachial plexus: experimental studies in a rat model.  J Reconstr Microsurg. 1991;  7 15-22

Julia K TerzisM.D. Ph.D. 

Professor, Department of Surgery, Division of Plastic and Reconstructive Surgery, Eastern Virginia Medical School

700 Olney Road, LH 2055, Norfolk, VA 23501

Email: mrc@jkterzis.com

    >