Dtsch Med Wochenschr 2009; 134(20): 1067-1073
DOI: 10.1055/s-0029-1222571
Übersicht | Review article
Diabetologie
© Georg Thieme Verlag KG Stuttgart · New York

Diabetische Dyslipoproteinämie: jenseits von LDL

Diabetic dyslipidemia: beyond LDLM. Merkel1
  • 11. Medizinische Abteilung (Diabetes, Stoffwechsel, Endokrinologie, Gastroenterologie und Allgemeine Innere Medizin), Asklepios Klinik St. Georg, Hamburg
Further Information

Publication History

eingereicht: 23.12.2008

akzeptiert: 30.4.2009

Publication Date:
06 May 2009 (online)

Zusammenfassung

Angesichts der dramatischen Zunahme des Diabetes mellitus Typ 2 wird eine adäquate Therapie der diabetischen Dyslipoproteinämie zur Prophylaxe kardiovaskulärer Erkrankungen immer wichtiger. Zentrales pathogenetisches Charakteristikum dieser Fettstoffwechselstörung ist eine Erhöhung der Plasma-Triglyzeride. Die triglyzeridreichen Lipoproteine selbst sind nicht atherogen; sie werden allerdings zu Restpartikeln (Chylomikronen-Remnants und VLDL-Remnants) abgebaut. Über den durch Cholesterylester-Transferprotein (CETP) vermittelten Lipidtransport entstehen atherogene kleine dichte LDL-Partikel (sdLDL), und das HDL-Cholesterin wird gesenkt. Alle diese Faktoren bewirken ein deutlich erhöhtes kardiovaskuläres Risiko. Abgesehen von Allgemeinmaßnahmen wie Gewichtsreduktion und Diät ist eine spezifische, durch eine robuste Datenlage begründete Therapie der diabetischen Dyslipoproteinämie schwierig. Weder für Fibrate noch für Nikotinsäure liegen derzeit überzeugende Endpunktstudien vor, die einen primären Einsatz dieser Medikamente rechtfertigen würden. Vor diesem Hintergrund ist ein zielwertgerechter Einsatz von Statinen zur Senkung des LDL-Cholesterins mit dem Ziel der größtmöglichen Reduktion des kardiovaskulären Risikos die Basis der Therapie der diabetischen Dyslipoproteinämie. Der Einsatz anderer Lipidsenker kann im Einzelfall erwogen werden.

Summary

Diabetes mellitus type 2 is reaching epidemic proportions in western societies. The treatment of diabetic dyslipidemia to prevent cardiovascular disease is of increasing clinical and scientific interest. In the pathogenesis of this disease plasma triglycerides play a central role. Triglyceride rich particles by themselves are not considered atherogenic; however, they are hydrolysed to chylomicron and VLDL remnant particles. Furthermore, mediated by cholesteryl ester transfer protein (CETP), atherogenic small dense LDL particles (sdLDL) emerge, and HDL cholesterol decreases. All these factors yield into a significantly increased atherogenesis and cardiovascular risk. Weight reduction and low fat diets have shown positive effects in general, but a specific therapy to treat diabetic dyslipidemia is still missing. Studies so far have failed to show a reliable benefit for fibrates and for nicotinic acid. Thus, statin therapy to decrease LDL cholesterol to target is the essential treatment for diabetic dyslipidemia to reduce cardiovascular risk. Other lipid lowering drugs can be added optionally.

  • 1 American Diabetes Association . Standards of Medical Care in Diabetes – 2008.  Diabetes Care. 2008;  31 S12-S54
  • 2 Assmann G, Schulte H, Seedorf U. Cardiovascular risk assessment in the metabolic syndrome: results from the Prospective Cardiovascular Munster (PROCAM) Study.  Int J Obes (Lond). 2008;  32 Suppl 2 S11-6
  • 3 Austin M A, King M C, Vranizan K M, Krauss R M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk.  Circulation. 1990;  82 495-506
  • 4 Bansal S, Buring J E, Rifai N, Mora S, Sacks F M, Ridker P M. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women.  Jama. 2007;  298 309-16
  • 5 Barter P J, Caulfield M, Eriksson M. et al . Effects of torcetrapib in patients at high risk for coronary events.  N Engl J Med. 2007;  357 2109-22
  • 6 Belsey J, de Lusignan S, van Vlymen J, Chan T, Hague N. Reducing coronary risk by raising HDL-cholesterol: risk modelling the addition of nicotinic acid to existing therapy.  Curr Med Res Opin. 2008;  24 2703-9
  • 7 Bloedon L T, Dunbar R, Duffy D. et al . Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients.  J Lipid Res. 2008;  49 1344-52
  • 8 Canner P L, Berge K G, Wenger N K. et al . Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin.  J Am Coll Cardiol. 1986;  8 1245-55
  • 9 Carlson L, Böttiger L. Ischaemic heart-disease in relation to fasting values of plasma triglycerides and cholesterol. Stockholm prospective study.  Lancet. 1972;  1 865-8
  • 10 Danesh J, Collins R, Peto R. Lipoprotein(a) and coronary heart disease. Meta-analysis of prospective studies.  Circulation. 2000;  102 1082-5
  • 11 Das A, Davis M A, Tomoda H, Omura S, Rudel L L. Identification of the interaction site within acyl-CoA:cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A.  J Biol Chem. 2008;  283 10 453-60
  • 12 Dattilo A M, Kris-Etherton P M. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis.  Am J Clin Nutr. 1992;  56 320-8
  • 13 Frick M H, Elo O, Haapa K. et al . Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease.  N Engl J Med. 1987;  317 1237-45
  • 14 Friedewald W T, Levy R I, Fredrickson D S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.  Clin Chem. 1972;  18 499-502
  • 15 Gardner C D, Fortmann S P, Krauss R M. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women.  Jama. 1996;  276 875-81
  • 16 Ginsberg H N. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis.  Diabetes Care. 1991;  14 839-55
  • 17 Ginsberg H N, Zhang Y L, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes.  Arch Med Res. 2005;  36 232-40
  • 18 Goldenberg I, Benderly M, Goldbourt U. Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia: an extended follow-up of the BIP trial.  J Am Coll Cardiol. 2008;  51 459-65
  • 19 Gordon T, Castelli W P, Hjortland M C, Kannel W B, Dawber T R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.  Am J Med. 1977;  62 707-14
  • 20 Grundy S M. Promise of low-density lipoprotein-lowering therapy for primary and secondary prevention.  Circulation. 2008;  117 569-73
  • 21 Grundy S M, Cleeman J I, Merz C N. et al . Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines.  Circulation. 2004;  110 227-39
  • 22 Hokanson J E, Austin M A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies.  J Cardiovasc Risk. 1996;  3 213-9
  • 23 Horowitz B S, Goldberg I J, Merab J, Vanni T M, Ramakrishnan R, Ginsberg H N. Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol.  J Clin Invest. 1993;  91 1743-52
  • 24 Karpe F, Bickerton A S, Hodson L, Fielding B A, Tan G D, Frayn K N. Removal of triacylglycerols from chylomicrons and VLDL by capillary beds: the basis of lipoprotein remnant formation.  Biochem Soc Trans. 2007;  35 472-6
  • 25 Kearney P M, Blackwell L, Collins R. et al . Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis.  Lancet. 2008;  371 117-25
  • 26 Keech A, Simes R J, Barter P. et al . Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial.  Lancet. 2005;  366 1849-61
  • 27 Kluger M, Heeren J, Merkel M. Apoprotein A-V: An important regulator of triglyceride metabolism.  J Inherit Metab Dis. 2008;  31 281-288
  • 28 Kraus W E, Houmard J A, Duscha B D. et al . Effects of the amount and intensity of exercise on plasma lipoproteins.  N Engl J Med. 2002;  347 1483-92
  • 29 Lahdenpera S, Syvanne M, Kahri J, Taskinen M R. Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides.  Diabetologia. 1996;  39 453-61
  • 30 Lamarche B, Tchernof A, Moorjani S. et al . Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study.  Circulation. 1997;  95 69-75
  • 31 Levy Y. High-density lipoprotein mass, cholesteryl ester transport protein, and macrophage reverse cholesterol transport: from the bedside back to the bench.  Cardiovasc Res. 2008;  77 614-5
  • 32 McKenney J M, Jones P H, Adamczyk M A, Cain V A, Bryzinski B S, Blasetto J W. Comparison of the efficacy of rosuvastatin versus atorvastatin, simvastatin, and pravastatin in achieving lipid goals: results from the STELLAR trial.  Curr Med Res Opin. 2003;  19 689-98
  • 33 McNamara J R, Shah P K, Nakajima K. et al . Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study.  Atherosclerosis. 2001;  154 229-36
  • 34 Merkel M, Eckel R H, Goldberg I J. Lipoprotein lipase: genetics, lipid uptake and regulation.  J Lipid Res. 2002;  43 1997-2006
  • 35 Muller-Wieland D, Kotzka J. SREBP-1: gene regulatory key to syndrome X?.  Ann N Y Acad Sci. 2002;  967 19-27
  • 36 Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.  Circulation. 2002;  106 3143-421
  • 37 Nissen S E, Tsunoda T, Tuzcu E M. et al . Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.  JAMA. 2003;  290 2292-300
  • 38 Nordestgaard B G, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.  JAMA. 2007;  298 299-308
  • 39 Otvos J D, Collins D, Freedman D S. et al . Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.  Circulation. 2006;  113 1556-63
  • 40 Parhofer K G, Laubach E, Geiss H C, Otto C. Einfluss einer verbesserten Blutzuckereinstellung auf den Lipidspiegel bei Patienten mit Typ-2-Diabetes.  Dtsch Med Wochenschr. 2002;  127 958-62
  • 41 Ridker P M. Cardiology Patient Page. C-reactive protein: a simple test to help predict risk of heart attack and stroke.  Circulation. 2003;  108 e81-5
  • 42 Rubins H B, Robins S J, Collins D. et al . Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group.  N Engl J Med. 1999;  341 410-8
  • 43 Ryden L, Standl E, Bartnik M. et al . Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD).  Eur Heart J. 2007;  28 88-136
  • 44 Saha S A, Kizhakepunnur L G, Bahekar A, Arora R R. The role of fibrates in the prevention of cardiovascular disease – a pooled meta-analysis of long-term randomized placebo-controlled clinical trials.  Am Heart J. 2007;  154 943-53
  • 45 Samaha F F, McKenney J, Bloedon L T, Sasiela W J, Rader D J. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia.  Nat Clin Pract Cardiovasc Med. 2008;  5 497-505
  • 46 Sarwar N, Danesh J, Eiriksdottir G. et al . Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies.  Circulation. 2007;  115 450-8
  • 47 Schramm T K, Gislason G H, Kober L. et al . Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people.  Circulation. 2008;  117 1945-54
  • 48 Smith Jr S C, Allen J, Blair S N. et al . AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute.  Circulation. 2006;  113 2363-72
  • 49 van Acker B A, Botma G J, Zwinderman A H. et al . High HDL cholesterol does not protect against coronary artery disease when associated with combined cholesteryl ester transfer protein and hepatic lipase gene variants.  Atherosclerosis. 2008;  200 161-7
  • 50 Walldius G, Jungner I, Holme I, Aastveit A H, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study.  Lancet. 2001;  358 2026-33
  • 51 Wang J, Ban M R, Zou G Y. et al . Polygenic determinants of severe hypertriglyceridemia.  Hum Mol Genet. 2008;  17 2894-9
  • 52 Yusuf S, Hawken S, Ounpuu S. et al . Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.  Lancet. 2004;  364 937-52
  • 53 Zambon A, Bertocco S, Vitturi N, Polentarutti V, Vianello D, Crepaldi G. Relevance of hepatic lipase to the metabolism of triacylglycerol-rich lipoproteins.  Biochem Soc Trans. 2003;  31 1070-4
  • 54 Zilversmit D B. Atherogenesis: a postprandial phenomenon.  Circulation. 1979;  60 473-85

PD Dr. med. Martin Merkel

1. Medizinische Abteilung, Asklepios Klinik St. Georg, Institute for Diabetes Research, Lipide und Diabetes (LiDia)

Lohmühlenstr. 5

20099 Hamburg

Phone: 040/18 18–85 2352

Fax: 040/18 18–85 3029

Email: m.merkel@asklepios.com