Subscribe to RSS
DOI: 10.1055/s-0029-1219838
Regioselective 3-Nitration of Flavones: A New Synthesis of 3-Nitro- and 3-Aminoflavones
Publication History
Publication Date:
16 April 2010 (online)
Abstract
A new, general, and regioselective method for the 3-nitration of flavones have been developed. The nitration reaction is solvent dependent, proceeds via a nitro radical pathway, and the corresponding 3-nitroflavones have been obtained in moderate to very good yields (up to 81%). The reduction of 3-nitroflavones allowed the preparation of the corresponding 3-aminoflavones in very good yields (up to 96%).
Key words
flavones - nitration - regioselectivity - reduction - radical reaction
-
1a
The Flavonoids - Advances in Research
Since 1986
Harborne JB. Chapman and Hall; London: 1994. -
1b
Harborne JB.Williams CA. Phytochemistry 2000, 55: 481 -
2a
Flavonoids in Health and Disease
Rice-Evans C.Packer L. Marcel Dekker; New York: 1998. -
2b
Middleton E.Kandaswami C.Theoharides TC. Pharmacol. Rev. 2000, 52: 673 -
2c
Silva AMS.Pinto DCGA.Cavaleiro JAS. In Targets in Heterocyclic Systems - Chemistry and Properties Vol. 4:Attanasi OA.Spinelli D. Italian Society of Chemistry; Rome: 2001. p.231 -
2d
Rice-Evans C. Curr. Med. Chem. 2001, 8: 797 -
2e
Manthey JA.Guthrie N.Grohmann K. Curr. Med. Chem. 2001, 8: 135 -
3a
Marder M.Viola H.Wasowski C.Wolfman C.Waterman PG.Medina JH.Paladini AC. Bioorg. Med. Chem. Lett. 1995, 5: 2717 -
3b
Viola H.Marder M.Wolfman C.Wasowski C.Medina JH.Paladini AC. Bioorg. Med. Chem. Lett. 1997, 7: 373 - 4
Wolfman C.Viola H.Marder M.Wasowski C.Ardenghi P.Izquierdo I.Paladini AC.Medina JH. Eur. J. Pharmacol. Lett. 1995, 5: 2717 - 5
Davis JW.Burdick AD.Lauer FT.Burchiel SW. Toxicol. Appl. Pharmacol. 2003, 188: 42 - 6
Bauvois B.Puiffe M.-L.Bongui J.-B.Paillat S.Monneret C.Dauzonne D. J. Med. Chem. 2003, 46: 3900 - 7
Akama T.Ishida H.Kimura U.Gomi K.Saito H.
J. Med. Chem. 1998, 41: 2056 - 8
Cushman M.Zhu H.Geahlen RL.Kraker AJ. J. Med. Chem. 1994, 37: 3353 - 9
Gao H.Kawabata J. Bioorg. Med. Chem. 2005, 13: 1661 - 10
Beudot C.De Méo MP.Dauzonne D.Elias R.Laget M.Guiraud H.Balansard G.Duménil G. Mutation Res. 1998, 417: 141 - 11
Steele VE.Boone CW.Dauzonne D.Rao CV.Bensasson RV. Cancer Res. 2002, 62: 6506 - 12
Dauzonne D.Folléas B.Martinez L.Chabot GG. Eur. J. Med. Chem. 1997, 71 - 13
Tang L.Zhang S.Yang J.Gao W.Cui J.Zhuang T. Synth. Commun. 2005, 35: 315 - 14
Marder M.Viola H.Bacigaluppo JA.Colombo MI.Wasowski C.Wolfman C.Medina JH.Rúveda JH.Paladini AC. Biochem. Biophys. Res. Commun. 1998, 249: 481 - 15
Anand N.Venkataraman FA. Proc. Indian Acad. Sci. A 1947, 26: 279 - 16
Barros AIRNA.Silva AMS. Monatsh. Chem. 2006, 137: 1505 -
17a
Michalska M. Chem. Ind. (London) 1966, 628 -
17b
Michalska M. Bull. Acad. Pol. Sci., Ser. Sci. Chem. 1968, 16: 567 - 18
Paparao C.Rao KV.Sundaramurthy V. Synthesis 1981, 236 -
19a
Dauzonne D.Demerseman P. Synthesis 1990, 66 -
19b
Dauzonne D.Grandjean C. Synthesis 1992, 677 - 20
Dauzonne D.Martinez L. Tetrahedron Lett. 1995, 36: 1845 -
21a
Barros AIRNA.Silva AMS. Magn. Reson. Chem. 2006, 44: 1122 -
21b
Barros AIRNA.Dias AFR.Silva AMS. Monatsh. Chem. 2007, 138: 585 - 22
Deng B.-L.Lepoivre JA.Lumière G. Eur. J. Org. Chem. 1999, 2683 - 23
Takechi A.Takikawa H.Miyake H.Sasaki M. Chem. Lett. 2006, 35: 128 -
24a
Olah GA.Malhorta R.Narang SC. Nitration - Methods and Mechanism VCH; New York: 1989. -
24b
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001. -
25a
Salzbrunn S.Simon J.Prakash GKR.Petasis NA.Olah GA. Synlett 2000, 1485 -
25b
Prakash GKR.Panja C.Mathew T.Surampudi V.Petasis NA.Olah GA. Org. Lett. 2004, 6: 2205 -
25c
Deghati PYF.Bieraugel H.Wanner MJ.Koomen GJ. Tetrahedron Lett. 2000, 41: 569 -
25d
Mellor JM.Mittoo S.Parkes R.Millar RW. Tetrahedron 2000, 8019 - 26
Crivello JV. J. Org. Chem. 1981, 46: 3056 - 27
Njoroge FG.Vibulbhan B.Pinto P.Chang T.-M.Osterman R.Remiszewski S.Del Rosario J.Doll R.Girijavallabhan V.Ganguly AK. J. Org. Chem. 1998, 63: 445 - 31
Cunningham BD.Threadgill MD.Groundwater PW.Dale IL.Hickman JA. Anticancer Drug Des. 1992, 7: 365 - 32
Evans PA.Longmire JM. Tetrahedron Lett. 1994, 35: 8345 -
35a
Ram S.Ehrenkaufer RE. Synthesis 1986, 133 -
35b
Haldar P.Mahajani VV. Chem. Eng. J. 2004, 104: 27 -
35c
Byun E.Hong B.De Castro KA.Kim M.Rhee H. J. Org. Chem. 2007, 72: 9815
References and Notes
General Procedure
for the Nitration of Flavones 1a-e: Synthesis of 3-Nitroflavones
2a-e
To a solution of the appropriate flavone 1a-e (0.38
mmol) in the requisite solvent (20 mL in total), cooled in an ice
bath, NH4NO3 and TFAA were added, and the
reaction mixture was stirred under conditions indicated in Table
[¹]
. After the appropriate
reaction time, the reaction mixture was poured into H2O
(20 mL), and extracted with CHCl3 (3 × 20
mL). The combined organic extracts were dried over Na2SO4, filtered,
and evaporated to dryness. The mixture was purified by silica gel
column chromatography eluting with mixtures of CH2Cl2-light
PE of increasing polarity to afford the
3-nitroflavones
and byproducts (Table
[¹]
).
Physical Data
for 3-Nitro-4′-trifluoroacetamidoflavone (1e)
Mp
228-230 ˚C. ¹H NMR (300 MHz,
DMSO-d
6): δ = 7.65 (ddd,
1 H, J = 8.1,
7.0, 1.0 Hz, H-6), 7.84 (d, 2 H, J = 8.8
Hz, H-3′,5′), 7.86 (d, 1 H, J = 8.4
Hz, H-8), 7.95 (d, 2 H, J = 8.8 Hz,
H-2′,6′), 7.98 (ddd, 2 H, J = 8.4,
7.0, 1.6 Hz, H-7), 8.19 (dd, 1 H, J = 8.1,
1.6 Hz, H-5), 11.69 (s, 1 H, 4′-NHCOCF3) ppm. ¹³C
NMR (75.47 MHz, DMSO-d
6): δ = 115.6
(Cq, J = 288.6
Hz, 4′-NHCOCF3),
119.2 (C-8), 121.3 (C-3′,5′), 122.8 (C-10), 124.9
(C-5), 125.5 (C-6), 126.9 (C-1′), 129.2 (C-2′,6′),
136.0 (C-7), 137.5 (C-3), 140.5 (C-4′), 155.0 (Cq, J = 37.0 Hz,
4′-NHCOCF3), 155.2
(C-9), 159.4 (C-2), 168.5 (C-4) ppm. ¹9F NMR
(282.40 MHz, DMSO-d
6): δ = -97.46 (4′-NHCOCF3)
ppm. ESI-MS (+): m/z (%) = 417
(22) [M + K]+, 401
(100) [M + Na]+,
379 (88) [M + H]+.
Anal. Calcd for C17H9F3N2O5:
C, 53.96; H, 2.40; N, 7.41. Found: C, 54.02; H, 2.26; N, 7.25.
Physical Data
for 4′-Trifluoroacetamidoflavone (7e)
Mp
280-282 ˚C. ¹H NMR (300 MHz,
DMSO-d
6): δ = 7.05 (s,
1 H, H-3), 7.51 (ddd, 1 H, J = 8.1,
6.9, 1.4 Hz, H-6), 7.79 (dd, 1 H, J = 8.4,
1.0 Hz, H-8), 7.85 (ddd, 1 H, J = 8.4,
6.8, 1.6 Hz, H-7), 7.90 (d, 2 H, J = 8.9
Hz, H-3′,5′), 8.06 (dd, 1 H, J = 7.9,
1.4 Hz, H-5), 8.18 (d, 2 H, J = 8.9
Hz, H-2′,6′), 11.60 (s, 1 H, 4′-NHCOCF3)
ppm. ¹³C NMR (75.47 MHz, DMSO-d
6): δ = 106.6
(C-3), 115.7 (Cq, J = 288.7
Hz, 4′-NHCOCF3),
118.6 (C-8), 121.1 (C-3′,5′), 123.4 (C-10), 124.9
(C-6), 125.6 (C-5), 127.4 (C-2′,6′), 127.9 (C-1′),
134.4 (C-7), 139.6 (C-4′), 154.8 (Cq, J = 37.3 Hz,
4′-NHCOCF3), 155.7
(C-9), 162.0 (C-2), 177.2 (C-4) ppm. ¹9F NMR (282.40
MHz, DMSO-d
6): δ = -97.39
(4′-NHCOCF3) ppm. ESI-MS (+): m/z (%) = 356
(21) [M + Na]+, 334
(100) [M + 1]+. Anal.
Calcd for C17H10F3NO3:
C, 61.27; H, 3.02; N, 4.20. Found: C, 61.06; H, 2.67; N, 4.43.
General Procedure
for the Reduction of 3-Nitroflavones 2a-c (Method A): Synthesis
of 3-Aminoflavones 8a-c
Ammonium formate
(215 mg; 3.30 mmol) and Pd/C (33 mg) were added to a solution
of the 3-nitroflavone 2a-c (0.33 mmol) in acetone (5 mL), and the
reaction mixture was heated at 80 ˚C for 1 h.
After cooling to r.t., the reaction mixture was filtered through
Celite, and the organic layer was evaporated to dryness. The residue
was purified by column chromatography on silica gel and eluted with CH2Cl2 to
give the 3-aminoflavones 8a-c (for yield, see Table
[²]
).
General Procedure
for the Reduction of 3-Nitroflavones 2a-e (Method B): Synthesis
of 3-Aminoflavones 8a-e
To a solution of
the 3-nitroflavone 2a-e (0.33 mmol) in CHCl3 (40 mL),
tin(powder) (3.3 g), and HCl (37%, w/v;
11
mL) were added, and the reaction mixture was stirred vigorously
for 1 h at r.t. After this period, the reaction mixture was neutralized
with NaHCO3, filtered through Celite, and the solid residue
washed with H2O and CHCl3. The filtrate was
extracted with CHCl3, the organic layer was dried over
Na2SO4, filtered, and evaporated to dryness.
The mixture was purified by silica gel column chromatography, eluting
with CH2Cl2, giving 3-aminoflavones (for yield,
see Table
[²]
).
Physical Data
for 3-Amino-4′-trifluoroacetamido-flavone (8e)
Mp
195-196 ˚C. ¹H NMR (300 MHz,
DMSO-d
6): δ = 4.80 (s,
2 H, 3-NH2), 7.43 (ddd, 1 H, J = 8.1,
6.9, 1.2 Hz, H-6), 7.67 (ddd, 1 H, J = 8.6,
1.2, 0.5 Hz, H-8), 7.76 (ddd, 1 H, J = 8.6,
6.9, 1.7 Hz, H-7), 8.04 (d, 2 H, J = 9.0
Hz, H-3′,5′), 7.89 (d, 2 H, J = 9.1
Hz, H-2′,6′), 8.10 (ddd, 1 H, J = 8.1,
1.7, 0.5 Hz, H-5), 11.51 (s, 1 H, 4′-NHCOCF3)
ppm. ¹³C NMR (125.67 MHz, DMSO-d
6): δ = 115.8
(quart, J = 288.6
Hz, 4′-NHCOCF3),
118.3 (C-8), 120.1 (C-10), 121.0 (C-2′,6′), 124.3
(C-6), 125.0 (C-5), 128.2 (C-3′,5′), 128.6 (C-3),
129.6 (C-1′), 133.3 (C-7), 137.2 (C-4′), 142.3
(C-2), 154.7 (quart, J = 37.1
Hz, 4′NHCOCF3), 154.7
(C-9), 172.7 (C-4) ppm. ¹9F NMR (282.40 MHz,
DMSO-d
6): δ = -97.36
(s, 4′-NHCOCF
3) ppm.
ESI-MS (+): m/z (%) = 371
(21) [M + Na]+, 349
(100) [M + 1]+. Anal.
Calcd for C17H11F3N2O3:
C, 58.63; H, 3.18; N, 8.04. Found: C, 58.42; H, 3.49; N, 7.85.