Synlett 2010(9): 1421-1425  
DOI: 10.1055/s-0029-1219835
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Oxo-Diels-Alder Reaction of Danishefsky’s Diene with Aldehydes, Catalyzed by Chiral Tridentate Chromium(III)-Schiff Base Complexes

Sawomir Mięsowicza, Wojciech Chaładaja, Janusz Jurczak*a,b
a Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
b Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
Fax: +48(22)6326681; e-Mail: jurczak@icho.edu.pl;
Further Information

Publication History

Received 12 February 2010
Publication Date:
20 April 2010 (online)

Abstract

The enantioselective hetero-Diels-Alder reaction of Danishefsky’s diene with simple aromatic and aliphatic aldehydes is catalyzed by chiral tridentate Schiff base-chromium(III) complexes. In many cases, 2,3-dihydropyran-4-ones are obtained in good yields (up to 99%) and high enantioselectivities (up to 97%).

    References and Notes

  • For examples, see:
  • 1a Noyori R. Asymmetric Catalysis in Organic Synthesis   Wiley; New York: 1994. 
  • 1b Nicolaou KC. Sorensen EJ. Classics in Total Synthesis: Targets, Strategies, Methods   VCH; Weinheim: 1996. 
  • For reviews, see:
  • 2a Danishefsky SJ. DeNinno MP. Angew. Chem., Int. Ed. Engl.  1987,  26:  15 
  • 2b Jørgensen KA. Angew. Chem. Int. Ed.  2000,  39:  3558 
  • 2c Maruoka K. Catalysis in Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  Chap. 8A.
  • 2d Pellissier H. Tetrahedron  2009,  65:  2839 
  • 3a Kwiatkowski P. Asztemborska M. Caille J.-C. Jurczak J. Adv. Synth. Catal.  2003,  345:  506 
  • 3b Malinowska M. Kwiatkowski P. Jurczak J. Tetrahedron Lett.  2004,  45:  7693 
  • 3c Kwiatkowski P. Asztemborska M. Jurczak J. Tetrahedron: Asymmetry  2004,  15:  3189 
  • 3d Kwiatkowski P. Asztemborska M. Jurczak J. Synlett  2004,  1755 
  • 3e Kosior M. Kwiatkowski P. Asztemborska M. Jurczak J. Tetrahedron: Asymmetry  2005,  16:  2897 
  • 3f Kwiatkowski P. Chaadaj W. Malinowska M. Asztemborska M. Jurczak J. Tetrahedron: Asymmetry  2005,  16:  2959 
  • 3g Chaadaj W. Kwiatkowski P. Jurczak J. Synlett  2006,  3263 
  • 4 Chaadaj W. Kwiatkowski P. Jurczak J. Tetrahedron Lett.  2008,  49:  6810 
  • 5a Dossetter AG. Jamison TF. Jacobsen EN. Angew. Chem. Int. Ed.  1999,  38:  2398 ; Angew. Chem. 1999, 111, 2549
  • 5b Thompson CF. Jamison TF. Jacobsen EN. J. Am. Chem. Soc.  2000,  122:  10482 
  • 5c Chavez DE. Jacobsen EN. Angew. Chem. Int. Ed.  2001,  40:  3667 
  • 5d Paterson I. De Savi C. Tudge M. Org. Lett.  2001,  3:  3149 
  • 5e Liu P. Jacobsen EN. J. Am. Chem. Soc.  2001,  123:  10772 
  • 5f Chavez DE. Jacobsen EN. Angew. Chem. Int. Ed.  2001,  40:  3667 
  • 5g Thompson CF. Jamison TF. Jacobsen EN. J. Am. Chem. Soc.  2001,  123:  9974 
  • 5h Paterson I. Tudge M. Angew. Chem. Int. Ed.  2003,  42:  343 
  • 5i Paterson I. Tudge M. Tetrahedron  2003,  59:  6833 
  • 5j Paterson I. Luckhurst CA. Tetrahedron Lett.  2003,  44:  3749 
  • 5k Louis I. Hungerford NL. Humphries EJ. McLeod MD. Org. Lett.  2006,  8:  1117 
  • 5l Bonazzi S. Güttinger S. Zemp I. Kutay U. Gademann K. Angew. Chem. Int. Ed.  2007,  46:  8707 
  • 5m Gosh AK. Gong G. Org. Lett.  2007,  9:  1437 
  • 6a Cox JM. Rainier JD. Org. Lett.  2001,  3:  2919 
  • 6b Smith AB. Fox RJ. Vanecko JA. Org. Lett.  2005,  7:  3099 
  • 6c Sanz MA. Voigt T. Waldmann H. Adv. Synth. Catal.  2006,  348:  1511 
  • 6d Lucas BS. Luther LM. Burke SD. J. Org. Chem.  2005,  70:  3757 
  • 6e Majumder U. Cox JM. Johnson HWB. Rainier JD. Chem. Eur. J.  2006,  12:  1736 
  • 7 Joly GD. Jacobsen EN. Org. Lett.  2002,  4:  1795 
  • 8a Bhattacharjee A. De Brabander JK. Tetrahedron Lett.  2000,  41:  8069 
  • 8b Paterson I. Steven A. Luckhurst CA. Org. Biomol. Chem.  2004,  2:  3026 
  • 8c Smith AB. Razler TM. Ciavarri JP. Hirose T. Ishikawa T. Meis RM. J. Org. Chem.  2008,  73:  1192 
  • 10 Danishefsky SJ. Larson E. Askin D. Kato N. J. Am. Chem. Soc.  1985,  107:  1246 
  • 12 Guillaneux D. Zhao SH. Samuel O. Rainford D. Kagan HB. J. Am. Chem. Soc.  1994,  116:  9430 
9

Typical procedure: Catalyst 2b (5.4 mg, 1 mol%) and a magnetic stirring bar was placed in a Schlenk tube and the atmosphere was replaced with argon. Under a gentle stream of argon, EtOAc (0.5 mL) was added. After dissolving the catalyst, the mixture was heated at 50 ˚C for 30 min, followed by addition of a freshly distilled aldehyde (4; 0.5 mmol) and then Danishefsky’s diene (3; 110 µL, 0.6 mmol) under a gentle stream of argon. The reaction was carried out at 50 ˚C for 12 h. After that time, the reaction mixture was cooled to r.t. and quenched with TFA (3 drops). After 30 min, the reaction mixture was diluted with CH2Cl2 and extracted with sat. aq K2CO3, H2O, and brine. The organic phase was concentrated and purified by chromatography over silica gel.

11

¹H NMR (200 MHz, CDCl3): δ = 2.6 (dd, J = 8.6, 3.8 Hz, 2 H), 2.75 (dd, J = 15, 3 Hz, 2 H), 3.6 (s, 3 H), 4.7 (m, 1 H), 4.7 (dd, J = 5.6, 2.2 Hz, 1 H), 7.4 (m, 5 H); ¹³C NMR (50 MHz, CDCl3): δ = 47.6, 48.6, 56.6, 73.2, 101.2, 125.7, 128.1, 128.6, 140.0, 204.9; IR: 2848, 1722, 1460, 1391, 1276, 1135, 1045, 762, 700, 460 cm; MS: m/z [M + Na + MeOH]+ calcd: 261.11094; found: 261.10973 (in the presence of EtOH instead of MeOH, the observed ion was [M + Na + EtOH]+: calcd 275.12403; found: 275.12538); Anal. Calcd for C12H14O3: C, 69.88; H, 6.84; O, 23.27. Found: C, 69.93; H, 6.91; O, 23.16.