RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219830
Acyl Radicals from Nitriles Promoted by Cp2TiCl in β-Lactam Chemistry
Publikationsverlauf
Publikationsdatum:
15. April 2010 (online)
Abstract
In order to synthesize new tricyclic β-lactams we have studied the reactivity of 4-alkenylepoxy-N-(1-cyano-1-dimethylethyl)-2-azetidinones with Cp2TiCl. The desired trilactams were not formed at all but an unsaturated nitrile and an aldehyde were obtained instead. Under similar reaction conditions, the treatment of styrylnitrile with Cp2TiCl afforded the styrylaldehyde. The formation of aldehydes in these reactions suggest the generation of acyl radicals from nitriles mediated by Cp2TiCl.
Key words
acyl radical - radical reduction of nitriles - titanocene monochloride - epoxynitrile-2-azetidinones
- 1
Anaya J.Fernández-Mateos A.Grande M.Martiáñez J.Ruano G.Rubio-González MR. Tetrahedron 2003, 59: 241 -
2a
Ruano G.Grande M.Anaya J. J. Org. Chem. 2002, 67: 8243 -
2b
Ruano G.Martiáñez J.Grande M.Anaya J. J. Org. Chem. 2003, 68: 2024 -
2c
Monleón LM.Grande M.Anaya J. Tetrahedron 2007, 63: 3017 - 3
Monleón LM.Grande M.Anaya J. Synlett 2007, 1243 -
4a
Barrero AF.Cuerva JM.Herrador MM.Valdivia MV. J. Org. Chem. 2001, 66: 4074 -
4b
Justicia J.Rosales A.Buñuel E.Oller-López JL.Valdivia M.Haïdour A.Oltra JE.Barrero AF.Cárdenas DJ.Cuerva JM. Chem. Eur. J. 2004, 10: 1778 -
4c
Justicia J.Oltra JE.Cuerva JM. Chem. Eur. J. 2005, 70: 8265 -
4d
Justicia J.Oller-López JL.Campaña AG.Oltra JE.Cuerva JM.Buñuel E.Cárdenas DJ. J. Am. Chem. Soc. 2005, 127: 14911 -
4e
Barrero AF.Quílez del Moral JF.Sánchez EM.Arteaga JF. Eur. J. Org. Chem. 2006, 1627 - 5
Fernández-Mateos A.Teijón PH.Rabanedo R.Rubio R.Sanz F. Synlett 2007, 2718 -
7a
Nugent WA.Rajan Babu TV. J. Am. Chem. Soc. 1988, 110: 8561 -
7b
Rajan Babu TV.Nugent WA. J. Am. Chem. Soc. 1994, 116: 986 - 9
Yamamoto Y.Matsumi D.Hattori R.Itoh K. J. Org. Chem. 1999, 64: 3224 - 10
Fernández-Mateos A.Herrero Teijón P.Mateos Burón L.Rabanedo Clemente R.Rubio González R. J. Org. Chem. 2007, 72: 9973 -
11a
Justicia J.Jiménez T.Morcillo SP.Cuerva JM.Oltra JE. Tetrahedron 2009, 65: 10837 -
11b
Cuerva JM.Campaña AG.Justicia J.Rosales A.Oller-López JL.Robles R.Cárdenas DJ.Buñuel E.Oltra JE. Angew. Chem. Int. Ed. 2006, 45: 5522
References and Notes
Epoxynitriles (Z/E)-1 were prepared by Staudinger reaction between methoxyacetyl chloride in the presence of Et3N and the imine prepared from 2,2-demethylaminoethanol and citral, followed by several functional-group conversion reactions and finally, selective epoxidation of the C9-C10 double bond with MCPBA at -25 ˚C. The C-9 stereochemistry in the epoxynitriles (Z/E)-1 could not be determined by ¹H NMR data.
8
Typical Procedure
for the Reactions with Titanocene Monochloride
Method A (Inverse Addition)
A
0.058 M solution of the specific epoxide (1.0 mmol) in anhyd THF
(17.0 mL) was added dropwise to a 0.176 M green suspension of Cp2TiCl,
generated from titanocene dichloride (548 mg, 2.2 mmol) and activated
zinc granules (262 mg, 4.0 mmol), in anhyd and strictly deoxygenated THF
(12.5 mL). The reaction mixture was stirred at r.t. until a color
change from green to orange was observed, and then the reaction
was quenched with 10% v/v aq KH2PO4 (30.0 mL).
The aqueous phase was extracted with EtOAc, and the organic combined
extracts were filtered through Celite®, dried
(over anhyd Na2SO4), and concentrated in vacuo.
The crude material obtained was purified by column chromatography
on silica gel.
Method
B (Direct Addition)
The green suspension of Cp2TiCl
in THF, prepared as in method A, was added to the solution of the
epoxide in THF, and the reaction mixture was then treated as in
method A.
Selected Data for Compounds
(
E
)-2, (
E
)-3, and 5
Compound
(E)-2: R
f
= 0.30
(hexanes-EtOAc, 1:1). IR: ν = 3479, 3080,
2238, 1766 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.48
(3 H, s), 1.51 (3 H, s), 1.60-1.85 (2 H, m), 1.69 (3 H,
s), 1.77 (3 H, s), 2.10-2.35 (2 H, m), 3.38 (3 H, s), 4.03
(1 H, dd, J = 6.8,
13.6 Hz), 4.46 (1 H, d, J = 4.9
Hz), 4.59 (1 H, dd, J = 4.9,
9.5 Hz), 4.80 (1 H, s), 4.90 (1 H, s), 5.34 (1 H, d, J = 9.5 Hz)
ppm. ¹³C NMR (50 MHz, CDCl3): δ = 16.4, 16.6,
25.9, 26.5, 28.5, 36.4, 49.6, 56.2, 58.4, 77.3, 83.8, 111.0, 118.9,
119.7, 143.5, 147.2, 165.8 ppm. HRMS (Q-TOF): m/z calcd
for C17H26N2O3Na [M+ + 23]:
329.1836; found: 329.1871.
Compound (
E
)-3: R
f
= 0.22
(hexanes-EtOAc, 1:1). IR: ν = 3447, 3080,
1750, 1730 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.34
(3 H, s), 1.36 (3 H, s), 1.55-1.80 (2 H, m), 1.70
(6
H, s), 2.00-2.20 (2 H, m), 3.39 (3 H, s), 4.00 (1 H, dd, J = 5.8, 11.5
Hz), 4.49 (1 H, d, J = 4.5
Hz), 4.52 (1 H, dd, J = 4.5,
11.7 Hz), 4.82 (1 H, s), 4.92 (1 H, s), 5.29 (1 H, d, J = 11.7 Hz),
9.50 (1 H, s) ppm. ¹³C NMR (50 MHz,
CDCl3): δ = 16.6,
17.6, 20.4, 20.7, 32.7, 35.7, 55.3, 58.3, 62.9, 75.1, 83.6, 111.0,
119.8, 142.9, 147.2, 167.1, 198.7 ppm. HRMS (Q-TOF): m/z calcd for C17H27NO4Na [M+ + 23]:
332.1970; found: 332.1975.
Compound 5:
The physical data of aldehyde 5 were in agreement
with those previously reported for this compound.²c